1
|
Shao Z, Tan Y, Zhan Y, He L. Modular organization of functional brain networks in patients with degenerative cervical myelopathy. Sci Rep 2024; 14:8593. [PMID: 38615051 PMCID: PMC11016091 DOI: 10.1038/s41598-024-58764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
Previous studies have indicated that brain functional plasticity and reorganization in patients with degenerative cervical myelopathy (DCM). However, the effects of cervical cord compression on the functional integration and separation between and/or within modules remain unclear. This study aimed to address these questions using graph theory. Functional MRI was conducted on 46 DCM patients and 35 healthy controls (HCs). The intra- and inter-modular connectivity properties of the whole-brain functional network and nodal topological properties were then calculated using theoretical graph analysis. The difference in categorical variables between groups was compared using a chi-squared test, while that between continuous variables was evaluated using a two-sample t-test. Correlation analysis was conducted between modular connectivity properties and clinical parameters. Modules interaction analyses showed that the DCM group had significantly greater inter-module connections than the HCs group (DMN-FPN: t = 2.38, p = 0.02); inversely, the DCM group had significantly lower intra-module connections than the HCs group (SMN: t = - 2.13, p = 0.036). Compared to HCs, DCM patients exhibited higher nodal topological properties in the default-mode network and frontal-parietal network. In contrast, DCM patients exhibited lower nodal topological properties in the sensorimotor network. The Japanese Orthopedic Association (JOA) score was positively correlated with inter-module connections (r = 0.330, FDR p = 0.029) but not correlated with intra-module connections. This study reported alterations in modular connections and nodal centralities in DCM patients. Decreased nodal topological properties and intra-modular connection in the sensory-motor regions may indicate sensory-motor dysfunction. Additionally, increased nodal topological properties and inter-modular connection in the default mode network and frontal-parietal network may serve as a compensatory mechanism for sensory-motor dysfunction in DCM patients. This could provide an implicative neural basis to better understand alterations in brain networks and the patterns of changes in brain plasticity in DCM patients.
Collapse
Affiliation(s)
- Ziwei Shao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Clinical Research Center for Medical Imaging In Jiangxi Province, Nanchang, China
| | - Yongming Tan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Clinical Research Center for Medical Imaging In Jiangxi Province, Nanchang, China
| | - Yaru Zhan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Clinical Research Center for Medical Imaging In Jiangxi Province, Nanchang, China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Clinical Research Center for Medical Imaging In Jiangxi Province, Nanchang, China.
| |
Collapse
|
2
|
Farré-Colomés À, Tan H, Gerhardt S, Gerchen MF, Kirsch M, Hoffmann S, Kirsch P, Kiefer F, Vollstädt-Klein S. Cue-exposure treatment influences resting-state functional connectivity-a randomized controlled fMRI study in alcohol use disorder. Psychopharmacology (Berl) 2024; 241:513-524. [PMID: 38261011 PMCID: PMC10884177 DOI: 10.1007/s00213-024-06531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
RATIONALE Cue-exposure therapy (CET) consists of exposing patients to the cause of their affliction in a controlled environment and after psychological preparation. Ever since it was conceived, it has been suggested as a treatment for different types of behavioural impairments, from anxiety disorders to substance abuse. In the field of addictive behaviour, many different findings have been shown regarding the effectiveness of this therapy. OBJECTIVES This study aims to examine the underlying neurobiological mechanisms of the effects of CET in patients with alcohol use disorder using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS In a randomized, controlled study, we examined patients after inpatient detoxification as well as healthy controls. Patients underwent nine sessions of CET spaced over 3 weeks. Rs-fMRI was conducted before treatment and 3 weeks after treatment onset in patients, healthy controls received only one rs-fMRI measurement. The final participant sample with complete data included 35 patients in the CET group, 17 patients in the treatment-as-usual group, and 43 HCs. RESULTS Our results show differences in the Salience Network when comparing the CET group to the treatment-as-usual group (TAU). Functional connectivity between the anterior cingulate Cortex (ACC) and the insula was increased after CET, whereas it was decreased from ACC to the putamen and globus pallidus. Further, increased connectivity with the precuneus was found in the dorsal attention network after cue exposure treatment. CONCLUSIONS These findings suggest that cue exposure therapy changes the resting-state brain connectivity with additional effects to the standard psychotherapy treatment. Hence, our study results suggest why including CET in standard therapies might improve the preparation of patients in front of daily situations.
Collapse
Affiliation(s)
- Àlvar Farré-Colomés
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Haoye Tan
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Sarah Gerhardt
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Martin Fungisai Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, 68159, Mannheim, Germany
- Department of Psychology, Heidelberg University, 69117, Heidelberg, Germany
| | - Martina Kirsch
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, 68159, Mannheim, Germany
- Department of Psychology, Heidelberg University, 69117, Heidelberg, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Feuerlein Center on Translational Addiction Medicine, Heidelberg University, 69117, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
3
|
Valdebenito-Oyarzo G, Martínez-Molina MP, Soto-Icaza P, Zamorano F, Figueroa-Vargas A, Larraín-Valenzuela J, Stecher X, Salinas C, Bastin J, Valero-Cabré A, Polania R, Billeke P. The parietal cortex has a causal role in ambiguity computations in humans. PLoS Biol 2024; 22:e3002452. [PMID: 38198502 PMCID: PMC10824459 DOI: 10.1371/journal.pbio.3002452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/23/2024] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.
Collapse
Affiliation(s)
- Gabriela Valdebenito-Oyarzo
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Francisco Zamorano
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Campus Los Leones, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Josefina Larraín-Valenzuela
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Ximena Stecher
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - César Salinas
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Antoni Valero-Cabré
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, Massachusetts, United States of America
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
4
|
Constantinidis C, Ahmed AA, Wallis JD, Batista AP. Common Mechanisms of Learning in Motor and Cognitive Systems. J Neurosci 2023; 43:7523-7529. [PMID: 37940591 PMCID: PMC10634576 DOI: 10.1523/jneurosci.1505-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Rapid progress in our understanding of the brain's learning mechanisms has been accomplished over the past decade, particularly with conceptual advances, including representing behavior as a dynamical system, large-scale neural population recordings, and new methods of analysis of neuronal populations. However, motor and cognitive systems have been traditionally studied with different methods and paradigms. Recently, some common principles, evident in both behavior and neural activity, that underlie these different types of learning have become to emerge. Here we review results from motor and cognitive learning, relying on different techniques and studying different systems to understand the mechanisms of learning. Movement is intertwined with cognitive operations, and its dynamics reflect cognitive variables. Training, in either motor or cognitive tasks, involves recruitment of previously unresponsive neurons and reorganization of neural activity in a low dimensional manifold. Mapping of new variables in neural activity can be very rapid, instantiating flexible learning of new tasks. Communication between areas is just as critical a part of learning as are patterns of activity within an area emerging with learning. Common principles across systems provide a map for future research.
Collapse
Affiliation(s)
| | - Alaa A Ahmed
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder Colorado 80309
| | - Joni D Wallis
- Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Aaron P Batista
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
5
|
Bao C, Zhu X, Mōller-Mara J, Li J, Dubroqua S, Erlich JC. The rat frontal orienting field dynamically encodes value for economic decisions under risk. Nat Neurosci 2023; 26:1942-1952. [PMID: 37857772 PMCID: PMC10620098 DOI: 10.1038/s41593-023-01461-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Frontal and parietal cortex are implicated in economic decision-making, but their causal roles are untested. Here we silenced the frontal orienting field (FOF) and posterior parietal cortex (PPC) while rats chose between a cued lottery and a small stable surebet. PPC inactivations produced minimal short-lived effects. FOF inactivations reliably reduced lottery choices. A mixed-agent model of choice indicated that silencing the FOF caused a change in the curvature of the rats' utility function (U = Vρ). Consistent with this finding, single-neuron and population analyses of neural activity confirmed that the FOF encodes the lottery value on each trial. A dynamical model, which accounts for electrophysiological and silencing results, suggests that the FOF represents the current lottery value to compare against the remembered surebet value. These results demonstrate that the FOF is a critical node in the neural circuit for the dynamic representation of action values for choice under risk.
Collapse
Affiliation(s)
- Chaofei Bao
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Xiaoyue Zhu
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Joshua Mōller-Mara
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Jingjie Li
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Sylvain Dubroqua
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Jeffrey C Erlich
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China.
- NYU Shanghai, Shanghai, China.
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China.
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
6
|
Xu R, Bichot NP, Takahashi A, Desimone R. The cortical connectome of primate lateral prefrontal cortex. Neuron 2022; 110:312-327.e7. [PMID: 34739817 PMCID: PMC8776613 DOI: 10.1016/j.neuron.2021.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
The lateral prefrontal cortex (LPFC) of primates plays an important role in executive control, but how it interacts with the rest of the cortex remains unclear. To address this, we densely mapped the cortical connectome of LPFC, using electrical microstimulation combined with functional MRI (EM-fMRI). We found isomorphic mappings between LPFC and five major processing domains composing most of the cerebral cortex except early sensory and motor areas. An LPFC grid of ∼200 stimulation sites topographically mapped to separate grids of activation sites in the five domains, coarsely resembling how the visual cortex maps the retina. The temporal and parietal maps largely overlapped in LPFC, suggesting topographically organized convergence of the ventral and dorsal streams, and the other maps overlapped at least partially. Thus, the LPFC contains overlapping, millimeter-scale maps that mirror the organization of major cortical processing domains, supporting LPFC's role in coordinating activity within and across these domains.
Collapse
Affiliation(s)
- Rui Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Narcisse P Bichot
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atsushi Takahashi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|