1
|
Zhang B, Radder J, Giannakopoulos I, Grant A, Lagore R, Waks M, Tavaf N, van de Moortele PF, Adriany G, Sadeghi-Tarakameh A, Eryaman Y, Lattanzi R, Ugurbil K. Performance of receive head arrays versus ultimate intrinsic SNR at 7 T and 10.5 T. Magn Reson Med 2024; 92:1219-1231. [PMID: 38649922 PMCID: PMC11209800 DOI: 10.1002/mrm.30108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.
Collapse
Affiliation(s)
- Bei Zhang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Ilias Giannakopoulos
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Nader Tavaf
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | | | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Tansey R, Graff K, Rai S, Merrikh D, Godfrey KJ, Vanderwal T, Bray S. Development of human visual cortical function: A scoping review of task- and naturalistic-fMRI studies through the interactive specialization and maturational frameworks. Neurosci Biobehav Rev 2024; 162:105729. [PMID: 38763178 DOI: 10.1016/j.neubiorev.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
Collapse
Affiliation(s)
- Ryann Tansey
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shefali Rai
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daria Merrikh
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Mahjoob M, Heravian Shandiz J, Mirzajani A, Behboodi M, Sharini H, Nakhjavanpour N, Foroutannia A. Characterizing the Visual Cortex Function in Cognitive Task-Induced Mental Load: An Functional Magnetic Resonance Imaging Study. Brain Connect 2024; 14:189-197. [PMID: 38386496 DOI: 10.1089/brain.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Introduction: The mental load caused by simultaneous multitasking can affect visual information processing and reduce its ability. This study investigated the effect of mental load caused by cognitive tasks simultaneously with visual task on the number of active voxels in the visual cortex. Methods: This study recruited 22 individuals with a mean age of 24.72 ± 5.47 years. 3-Tesla functional magnetic resonance imaging (fMRI) was used to examine the functions of the visual cortex and amygdala region during three different task conditions: visual task alone, visual task with an auditory n-back task, and visual task with an arithmetic task. The visual stimuli consisted of Gabor patches with a contrast of 55% at spatial frequencies of 0.25, 4, and 9 cycles per degree (cpd). These were presented in three trials of eight blocks with a stimulation time of 12 sec and a rest time of 14 sec. Results: Activated brain voxels in the primary, secondary, and associated visual cortex areas were reduced in response to the mental load imposed by the n-back and arithmetic tasks. This reduction was greater for a spatial frequency of 0.25 cpd in the n-back task condition and spatial frequency of 9 cpd in the arithmetic task condition. In addition, the amygdala was stimulated in 2-back task and arithmetic task conditions. Conclusions: This study revealed a decline in the number of activated voxels of the visual cortex due to the mental load caused by simultaneous cognitive tasks, confirming the findings of previous psychophysical studies.
Collapse
Affiliation(s)
- Monireh Mahjoob
- Health Promotion Research Center, Department of Optometry, Rehabilitation Sciences Faculty, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javad Heravian Shandiz
- Refractive Error Research Center, Department of Optometry, Paramedical Faculty, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirzajani
- Department of Optometry, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Behboodi
- Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Sharini
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Neda Nakhjavanpour
- Department of Optometry, Rehabilitation Sciences Faculty, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Foroutannia
- Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP), Ferdowsi University of Mashhad, Mashhad, Iran
- Neural Engineering Laboratory, Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran
| |
Collapse
|
4
|
Dowdle LT, Vizioli L, Moeller S, Akçakaya M, Olman C, Ghose G, Yacoub E, Uğurbil K. Evaluating increases in sensitivity from NORDIC for diverse fMRI acquisition strategies. Neuroimage 2023; 270:119949. [PMID: 36804422 DOI: 10.1016/j.neuroimage.2023.119949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
As the neuroimaging field moves towards detecting smaller effects at higher spatial resolutions, and faster sampling rates, there is increased attention given to the deleterious contribution of unstructured, thermal noise. Here, we critically evaluate the performance of a recently developed reconstruction method, termed NORDIC, for suppressing thermal noise using datasets acquired with various field strengths, voxel sizes, sampling rates, and task designs. Following minimal preprocessing, statistical activation (t-values) of NORDIC processed data was compared to the results obtained with alternative denoising methods. Additionally, we examined the consistency of the estimates of task responses at the single-voxel, single run level, using a finite impulse response (FIR) model. To examine the potential impact on effective image resolution, the overall smoothness of the data processed with different methods was estimated. Finally, to determine if NORDIC alters or removes temporal information important for modeling responses, we employed an exhaustive leave-p-out cross validation approach, using FIR task responses to predict held out timeseries, quantified using R2. After NORDIC, the t-values are increased, an improvement comparable to what could be achieved by 1.5 voxels smoothing, and task events are clearly visible and have less cross-run error. These advantages are achieved with smoothness estimates increasing by less than 4%, while 1.5 voxel smoothing is associated with increases of over 140%. Cross-validated R2s based on the FIR models show that NORDIC is not measurably distorting the temporal structure of the data under this approach and is the best predictor of non-denoised time courses. The results demonstrate that analyzing 1 run of data after NORDIC produces results equivalent to using 2 to 3 original runs and that NORDIC performs equally well across a diverse array of functional imaging protocols. Significance Statement: For functional neuroimaging, the increasing availability of higher field strengths and ever higher spatiotemporal resolutions has led to concomitant increase in concerns about the deleterious effects of thermal noise. Historically this noise source was suppressed using methods that reduce spatial precision such as image blurring or averaging over a large number of trials or sessions, which necessitates large data collection efforts. Here, we critically evaluate the performance of a recently developed reconstruction method, termed NORDIC, which suppresses thermal noise. Across datasets varying in field strength, voxel sizes, sampling rates, and task designs, NORDIC produces substantial gains in data quality. Both conventional t-statistics derived from general linear models and coefficients of determination for predicting unseen data are improved. These gains match or even exceed those associated with 1 voxel Full Width Half Max image smoothing, however, even such small amounts of smoothing are associated with a 52% reduction in estimates of spatial precision, whereas the measurable difference in spatial precision is less than 4% following NORDIC.
Collapse
Affiliation(s)
- Logan T Dowdle
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States; Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States
| | - Mehmet Akçakaya
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States; Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl Olman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States; Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey Ghose
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States; Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States; Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States
| |
Collapse
|
5
|
Conscious interpretation: A distinct aspect for the neural markers of the contents of consciousness. Conscious Cogn 2023; 108:103471. [PMID: 36736210 DOI: 10.1016/j.concog.2023.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Progress in the science of consciousness depends on the experimental paradigms and varieties of contrastive analysis available to researchers. Here we highlight paradigms where the object is represented in consciousness as a set of its features but the interpretation of this set alternates in consciousness. We group experimental paradigms with this property under the label "conscious interpretation". We compare the paradigms studying conscious interpretation of the already consciously perceived objects with other types of experimental paradigms. We review previous and recent studies investigating this interpretative aspect of consciousness and propose future directions. We put forward the hypothesis that there are types of stimuli with a hierarchy of interpretations for which the rule applies: conscious experience is drawn towards higher-level interpretation and reverting back to the lower level of interpretation is impossible. We discuss how theories of consciousness might incorporate knowledge and constraints arising from the characteristics of conscious interpretation.
Collapse
|
6
|
Sobczak AM, Bohaterewicz B, Fafrowicz M, Zyrkowska A, Golonka N, Domagalik A, Beldzik E, Oginska H, Rekas M, Bronicki D, Romanowska-Dixon B, Bolsega-Pacud J, Karwowski W, Farahani F, Marek T. Brain Functional Network Architecture Reorganization and Alterations of Positive and Negative Affect, Experiencing Pleasure and Daytime Sleepiness in Cataract Patients after Intraocular Lenses Implantation. Brain Sci 2021; 11:brainsci11101275. [PMID: 34679340 PMCID: PMC8533692 DOI: 10.3390/brainsci11101275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Cataracts are associated with progressive blindness, and despite the decline in prevalence in recent years, it remains a major global health problem. Cataract extraction is reported to influence not only perception, attention and memory but also daytime sleepiness, ability to experience pleasure and positive and negative affect. However, when it comes to the latter, the magnitude and prevalence of this effect still remains uncertain. The current study aims to evaluate the hemodynamic basis of daytime sleepiness, ability to experience pleasure and positive and negative affect in cataract patients after the intraocular lens (IOL) implantation. Methods: Thirty-four cataract patients underwent resting-state functional magnetic resonance imaging evaluation before and after cataract extraction and intraocular lens implantation. Both global and local graph metrics were calculated in order to investigate the hemodynamic basis of excessive sleepiness (ESS), experiencing pleasure (SHAPS) as well as positive and negative affect (PANAS) in cataract patients. Results: Eigenvector centrality and clustering coefficient alterations associated with cataract extraction are significantly correlated with excessive sleepiness, experiencing pleasure as well as positive and negative affect. Conclusions: The current study reveals the hemodynamic basis of sleepiness, pleasure and affect in patients after cataract extraction and intraocular lens implantation. The aforementioned mechanism constitutes a proof for changes in functional network activity associated with postoperative vision improvement.
Collapse
Affiliation(s)
- Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Correspondence: (A.M.S.); (B.B.)
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
- Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, 03-815 Warsaw, Poland
- Correspondence: (A.M.S.); (B.B.)
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Aleksandra Zyrkowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
| | - Natalia Golonka
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
| | - Aleksandra Domagalik
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Ewa Beldzik
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Halszka Oginska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Marek Rekas
- Ophthalmology Department, Military Institute of Medicine, 04-349 Warsaw, Poland; (M.R.); (D.B.)
| | - Dominik Bronicki
- Ophthalmology Department, Military Institute of Medicine, 04-349 Warsaw, Poland; (M.R.); (D.B.)
| | - Bozena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University, 31-008 Kraków, Poland; (B.R.-D.); (J.B.-P.)
| | - Joanna Bolsega-Pacud
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University, 31-008 Kraków, Poland; (B.R.-D.); (J.B.-P.)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering & Management Systems, University of Central Florida, Orlando, FL 32816, USA; (W.K.); (F.F.)
| | - Farzad Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering & Management Systems, University of Central Florida, Orlando, FL 32816, USA; (W.K.); (F.F.)
- Biostatistics Department, John Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland; (M.F.); (A.Z.); (N.G.); (E.B.); (H.O.); (T.M.)
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| |
Collapse
|
7
|
Abstract
Functional magnetic resonance imaging (fMRI) has become one of the most powerful tools for investigating the human brain. Ultrahigh magnetic field (UHF) of 7 Tesla has played a critical role in enabling higher resolution and more accurate (relative to the neuronal activity) functional maps. However, even with these gains, the fMRI approach is challenged relative to the spatial scale over which brain function is organized. Therefore, going forward, significant advances in fMRI are still needed. Such advances will predominantly come from magnetic fields significantly higher than 7 Tesla, which is the most commonly used UHF platform today, and additional technologies that will include developments in pulse sequences, image reconstruction, noise suppression, and image analysis in order to further enhance and augment the gains than can be realized by going to higher magnetic fields.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, 2021 6 Street SE, Minneapolis, MN 55456
| |
Collapse
|