1
|
Liu MN, Chang HI, Huang SH, Huang CW, Hsu SW, Lin KJ, Ho TY, Huang KL, Cheng CM, Chang CC. Development and validation of global tau severity score in Alzheimer's disease using Florzolotau (18F) PET. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111343. [PMID: 40147808 DOI: 10.1016/j.pnpbp.2025.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Tau-specific positron emission tomography (tau-PET) is valuable for assessing Alzheimer's disease (AD) severity, with phenotypic differences between young-onset AD (YOAD) and late-onset AD (LOAD) likely driven by distinct relationships between tau pathology and cognition. OBJECTIVE This study developed a global tau severity (gTS) scale using Florzolotau (18F) PET and compared it with the CenTauR score for standardizing tau burden quantification. METHODS A total of 186 participants were enrolled, including a pilot group (15 cognitive unimpaired controls [CTL], 15 AD patients) and a validation group (27 CTL, 67 YOAD, and 62 LOAD patients). In the validation group, cutoffs for diagnosing YOAD and LOAD using the gTS or CenTauR score were calculated. RESULTS The white matter region was identified as the most suitable reference for Florzolotau (18F). The gTS cutoff values of 24.1 for both AD and YOAD and 34.1 for LOAD demonstrated the highest diagnostic accuracy, as indicated by the area under the curve (AUC). The gTS score showed a higher AUC compared to CenTauR in YOAD versus CTL or LOAD versus CTL. The gTS scores significantly predicted total scores and subdomains on cognitive ability screening instruments. Cognitive-gTS curve features were found to have quadratic and linear relationships with YOAD and LOAD, respectively, illustrating different relationships between gTS scores and cognition. CONCLUSION The gTS score, derived from Florzolotau (18F) PET scans, provides significant predictions regarding tau burden and cognitive measurements. The higher AUC of gTS compared to the CenTauR universal scores indicates that gTS scores offer a robust method for differentiating AD from CTL.
Collapse
Affiliation(s)
- Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear medicine, Lin-Kou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Ying Ho
- Department of Nuclear medicine, Lin-Kou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Lin-Kou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Zhang H, Cao D, Xu T, Chen E, Li G, Chen Y, Payne P, Province M, Li F. mosGraphFlow: a novel integrative graph AI model mining disease targets from multi-omic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606219. [PMID: 39282361 PMCID: PMC11398418 DOI: 10.1101/2024.08.01.606219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Multi-omic data can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, our novel contributions are that we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of AD, and 3) identified, visualized and evaluated a set of AD associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. Moreover, the signaling sources are highlighted at specific omic levels to facilitate the understanding of the pathogenesis of AD. The proposed model can also be applied and expanded for other studies using multi-omic data. Model code is accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Lin Y, Wang J, Liu X, Hu Y, Zhang Y, Jiang F. Synthesis, biological activity evaluation and mechanism analysis of new ganglioside GM3 derivatives as potential agents for nervous functional recovery. Eur J Med Chem 2024; 266:116108. [PMID: 38218125 DOI: 10.1016/j.ejmech.2023.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neuronal regenerative ability is vital for the treatment of neurodegenerative diseases and neuronal injuries. Recent studies have revealed that Ganglioside GM3 and its derivatives may possess potential neuroprotective and neurite growth-promoting activities. Herein, six GM3 derivatives were synthesized and evaluated their potential neuroprotective effects and neurite outgrowth-promoting activities on a cellular model of Parkinson's disease and primary nerve cells. Amongst these derivatives, derivatives N-14 and 2C-12 demonstrated neuroprotective effects in the MPP + model in SH-SY5Y cells. 2C-12 combined with NGF (nerve growth factor) induced effecially neurite growth in primary nerve cells. Further action mechanism revealed that derivative 2C-12 exerts neuroprotective effects by regulating the Wnt signaling pathway, specifically involving the Wnt7b gene. Overall, this study establishes a foundation for further exploration and development of GM3 derivatives with neurotherapeutic potential.
Collapse
Affiliation(s)
- Yingjun Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangwen Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yangfan Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Lam BWS, Xiang P, Peng B, Soon LJJ, Yam ATY, Lim CMH, Zheng Y, Nguyen LN, Herr DR, Le MTN. Activation of S1P 2 is protective against cisplatin-induced peripheral neuropathy. Cell Prolif 2024; 57:e13549. [PMID: 37727014 PMCID: PMC10849780 DOI: 10.1111/cpr.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Ping Xiang
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Boya Peng
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Ling Jun Joshua Soon
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Amelia Ting Yu Yam
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Claudine Ming Hui Lim
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yu Zheng
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Long N. Nguyen
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Deron R. Herr
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Translational Neuroscience InitiativeSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Minh T. N. Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
Qiu Y, Lei C, Zeng J, Xie Y, Cao Y, Yuan Q, Su H, Zhang Z, Zhang C. Asparagine endopeptidase protects podocytes in adriamycin-induced nephropathy by regulating actin dynamics through cleaving transgelin. Mol Ther 2023; 31:3337-3354. [PMID: 37689970 PMCID: PMC10638058 DOI: 10.1016/j.ymthe.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the most common glomerular disorder causing end-stage renal diseases worldwide. Central to the pathogenesis of FSGS is podocyte dysfunction, which is induced by diverse insults. However, the mechanism governing podocyte injury and repair remains largely unexplored. Asparagine endopeptidase (AEP), a lysosomal protease, regulates substrates by residue-specific cleavage or degradation. We identified the increased AEP expression in the primary proteinuria model which was induced by adriamycin (ADR) to mimic human FSGS. In vivo, global AEP knockout mice manifested increased injury-susceptibility of podocytes in ADR-induced nephropathy (ADRN). Podocyte-specific AEP knockout mice exhibited much more severe glomerular lesions and podocyte injury after ADR injection. In contrast, podocyte-specific augmentation of AEP in mice protected against ADRN. In vitro, knockdown and overexpression of AEP in human podocytes revealed the cytoprotection of AEP as a cytoskeleton regulator. Furthermore, transgelin, an actin-binding protein regulating actin dynamics, was cleaved by AEP, and, as a result, removed its actin-binding regulatory domain. The truncated transgelin regulated podocyte actin dynamics and repressed podocyte hypermotility, compared to the native full-length transgelin. Together, our data reveal a link between lysosomal protease AEP and podocyte cytoskeletal homeostasis, which suggests a potential therapeutic role for AEP in proteinuria disease.
Collapse
Affiliation(s)
- Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Chuntao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
6
|
Xu B, Fereshtehnejad SM, Zeighami Y. Editorial: Prodromal stage of neurodegenerative proteinopathies: from bench to bedside. Front Neurosci 2023; 17:1295344. [PMID: 37829722 PMCID: PMC10565650 DOI: 10.3389/fnins.2023.1295344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Bin Xu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States
- Affiliated Faculty, Duke/UNC Alzheimer's Disease Research Center, Durham, NC, United States
| | - Seyed-Mohammad Fereshtehnejad
- Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Yashar Zeighami
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|
7
|
Yu H, Xiong M, Liu C, Xia D, Meng L, Zhang Z. The γ-Adducin 1-357 fragment promotes tau pathology. Front Aging Neurosci 2023; 15:1241750. [PMID: 37771520 PMCID: PMC10526357 DOI: 10.3389/fnagi.2023.1241750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Tau phosphorylation is a pathological hallmark of Alzheimer's disease (AD). Previously, we reported that the γ-adducin 1-357 fragment is present in the brains of AD patients. However, it remains unknown how γ-adducin regulates tau phosphorylation. Objective The aim of this project is to investigate the effects of the γ-adducin 1-357 fragment on tau phosphorylation and the kinases involved in this process. Methods Full-length γ-adducin or the γ-adducin 1-357 fragment was expressed in HEK293 cells, SH-SY5Y cells, and primary neurons. The phosphorylation of tau Ser396 was determined using Western blot and immunofluorescence. Tau P301S transgenic mice were injected with adeno-associated virus encoding full-length γ-adducin or γ-adducin 1-357 fragment to determine the phosphorylation of tau. Results The γ-adducin 1-357 fragment enhances tau phosphorylation at Ser396. Additionally, the expression of the γ-adducin 1-357 fragment leads to the activation of glycogen synthase kinase-3β (GSK-3β). This effect was mitigated by the GSK-3β inhibitor 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). Conclusion The γ-adducin 1-357 fragment enhances tau phosphorylation by activating GSK3β. These results support that the fragmentation of γ-adducin may play a pivotal role in tau pathology.
Collapse
Affiliation(s)
- Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danhao Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Yuan X, Yang Y, Liu C, Tian Y, Xia D, Liu Z, Pan L, Xiong M, Xiong J, Meng L, Zhang Z, Ye K, Jiang H, Zhang Z. Fine Particulate Matter Triggers α‐Synuclein Fibrillization and Parkinson‐like Neurodegeneration. Mov Disord 2022; 37:1817-1830. [DOI: 10.1002/mds.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xin Yuan
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Yingxu Yang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Chaoyang Liu
- Research Center for Environment and Health Zhongnan University of Economics and Law Wuhan China
| | - Ye Tian
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Danhao Xia
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Zehua Liu
- Research Center for Environment and Health Zhongnan University of Economics and Law Wuhan China
| | - Lina Pan
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Min Xiong
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Jing Xiong
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Lanxia Meng
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Zhaohui Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI) Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Zhentao Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
9
|
Gonzalez-Fernandez E, Fan L, Wang S, Liu Y, Gao W, Thomas KN, Fan F, Roman RJ. The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension-vascular, renal, and cognitive diseases. Physiol Genomics 2022; 54:58-70. [PMID: 34859687 PMCID: PMC8799388 DOI: 10.1152/physiolgenomics.00119.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|