1
|
Krivdin LB. Recent advances in liquid-phase NMR of the coal-derived products. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:775-802. [PMID: 39081064 DOI: 10.1002/mrc.5476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 10/03/2024]
Abstract
Present review focuses on the most recent advances in a liquid-phase nuclear magnetic resonance (NMR) of the coal-derived products-coal tar pitches, asphaltenes, and humic and fulvic acids, covering exclusively the results in the liquid-phase NMR studies leaving apart an overwhelming amount of publications dealing with the solid-state NMR investigations in this field (which are comprehensively reviewed elsewhere). Owing to the complexity of the coal-derived products, their 1H and 13C NMR spectra consist of a number of overlapping signals belonging to different hydrocarbon types. Comprehensive studies of coal tar pitches, asphaltenes, and humic and fulvic acids by means of NMR over the past several decades revealed characteristic functional groups of those fractions together with spectral regions in which they resonate. Quantitative 1H and 13C NMR spectra characterize aromatic and saturated carbons spread over many structural moieties, which provides a solid guideline into molecular structure of the coal-derived products. Nowadays, quantitative 13C NMR measurements yield information about a variety of structural parameters such as functional group distribution, aromaticity, degree of condensation of aromatic rings, and medium chain lengths together with many other more specific parameters. The structural NMR studies of coal and coal-derived products are developing on a backdrop of a marked progress in computational NMR. At present, we are witnessing an unprecedentedly fast development of theoretical and computational methods in the field of NMR spectroscopy. Discussed in the present review are the most recent advances in the NMR studies of the processing products of peat, lignite or brown coal, anthracite or hard coal, and graphite in solution, like coal tar pitches, asphaltenes, and humic and fulvic acids.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
2
|
Krivdin LB. Liquid-phase NMR of asphaltenes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:670-685. [PMID: 38807559 DOI: 10.1002/mrc.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
The present review focuses on the most recent advances in liquid-phase NMR of asphaltenes, leaving apart an overwhelming amount of publications dealing with solid-state NMR investigations in this field. Owing to the complexity of the coal-derived products, and in particular, asphaltenes, their 1H and 13C NMR spectra consist of a number of overlapping signals belonging to different hydrocarbon types. Comprehensive studies of asphaltenes by means of NMR reveal the characteristic functional groups of their fractions together with the spectral regions in which they resonate. NMR studies of asphaltenes provide a straightforward guideline for their chemical composition and that of the related coal-derived products.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
3
|
Rusakov YY, Rusakova IL. Getaway from the Geometry Factor Error in the Molecular Property Calculations: Efficient pecG- n ( n = 1, 2) Basis Sets for the Geometry Optimization of Molecules Containing Light p Elements. J Chem Theory Comput 2024. [PMID: 39075034 DOI: 10.1021/acs.jctc.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The basis of all molecular property quantum chemical calculations is the correct equilibrium geometry. In this paper, new efficient pecG-n (n = 1, 2) basis sets for the geometry optimization of molecules containing hydrogen and p elements of 2-3 periods are proposed. These basis sets were optimized via the property-energy consistent (PEC) algorithm directed to the minimization of the molecular energy gradient relative to the bond lengths. New basis sets are compact and give equilibrium geometries of very high quality, which is comparable to that provided by considerably larger energy-optimized basis sets. The equilibrium geometries obtained with the pecG-n (n = 1, 2) basis sets and the other basis sets of diverse quality were tested in the CCSD calculations of different second-order molecular properties, including NMR shielding constants, static polarizabilities, and static magnetizabilities. As a result, new basis sets have demonstrated far superior performance as compared to the other energy-optimized basis sets of the same or close sizes commonly used at the geometry optimization stage.
Collapse
Affiliation(s)
- Yuriy Yu Rusakov
- Siberian Branch of the Russian Academy of Sciences, A. E. Favorsky Irkutsk Institute of Chemistry, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Irina L Rusakova
- Siberian Branch of the Russian Academy of Sciences, A. E. Favorsky Irkutsk Institute of Chemistry, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| |
Collapse
|
4
|
Krivdin LB. 17 O nuclear magnetic resonance: Recent advances and applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:507-529. [PMID: 37449419 DOI: 10.1002/mrc.5378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The present review is focused on the most recent achievements in the application of liquid phase 17 O nuclear magnetic resonance (NMR) to inorganic, organic, and biochemical molecules focusing on their structure, conformations, and (bio)chemical behavior. The review is composed of four basic parts, namely, (1) simple molecules; (2) water and hydrogen bonding; (3) metal oxides, clusters, and complexes; and (4) biological molecules. Experimental 17 O NMR chemical shifts are thoroughly tabulated. They span a range of as much as almost 650 ppm (from -35.6 to +610.0 ppm) for inorganic and organic molecules, whereas this range is much wider for biological species being of about 1350 ppm (from -12 to +1332 ppm), and in the case of hemoproteins and heme-model compounds, isotropic chemical shifts of up to 2500 ppm were observed. The general prospects and caveats in the modern development of the liquid phase 17 O NMR in chemistry and biochemistry are critically discussed and briefly outlined in view of their future applications.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
5
|
Ukhanev SA, Fedorov SV, Krivdin LB. Computational 19 F NMR of trifluoromethyl derivatives of alkenes, pyrimidines, and indenes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:306-317. [PMID: 36740363 DOI: 10.1002/mrc.5335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The 19 F NMR chemical shifts of 13 trifluoromethyl derivatives of alkenes, pyrimidines, and indenes were calculated at the DFT level using the BhandHLYP, BHandH, PBE, PBE0, O3LYP, B3LYP, KT2, and KT3 functionals in combination with the pcS-2 basis set. Best result was documented for the BHandHLYP functional: The mean absolute error (MAE) of 0.66 ppm for the scaled values was achieved for the range of about 20 ppm. Solvent, vibrational, and relativistic corrections were found to be rather small, especially when taken in combination, generally demonstrating a slight decrease in the difference between calculated and experimental fluorine chemical shifts. As a measure of the practical importance of these compounds, one should recall that the growing number of life science products that contain trifluoromethyl groups provides a continuing driving force for the development of an effective methodology that enables both regio- and stereoselective introduction of trifluoromethyl groups into both aliphatic and aromatic systems.
Collapse
Affiliation(s)
- Stepan A Ukhanev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Sergei V Fedorov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| |
Collapse
|
6
|
Krivdin LB. Tritium NMR: A compilation of data and a practical guide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:195-247. [PMID: 36593685 DOI: 10.1002/mrc.5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The present review is focused on experimental methods and structural applications of tritium NMR. It consists of five parts covering accordingly, introduction, brief overview, early (based on the papers appearing before 2000), more recent (based on the papers appeared in the interim of 2000 to 2015), and recent (based on the papers that appeared after 2015) reports. A special interest in this review is focused on practical aspects of tritium NMR spectroscopy, which is thoroughly illustrated by its numerous applications in chemistry and biochemistry.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
7
|
Krivdin LB. Recent advances in the liquid-phase 6,7 Li nuclear magnetic resonance. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:138-161. [PMID: 36330776 DOI: 10.1002/mrc.5323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The present review is focused on experimental methods and structural applications, including computational aspects, of classical lithium liquid-phase nuclear magnetic resonance (NMR). It consists of four parts covering accordingly a brief overview, early experimental reports (papers of up to about 2015) and more recent (papers appearing in the interim of about 2015 until 2022) results, together with very few but highly prospective computational results.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
8
|
Ukhanev SA, Fedorov SV, Rusakov YY, Rusakova IL, Krivdin LB. Computational protocols for the 19F NMR parameters. Part 2: Fluorobenzenes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Edgar M, Kuhn S, Page G, Grootveld M. Computational simulation of 1 H NMR profiles of complex biofluid analyte mixtures at differential operating frequencies: Applications to low-field benchtop spectra. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:1097-1112. [PMID: 34847251 DOI: 10.1002/mrc.5236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Estimations of accurate and reliable NMR chemical shift values, coupling patterns and constants within a reasonable timeframe remain significantly challenging, and the unavailability of reliable software strategies for the prediction of low-field (e.g., 60 MHz) spectra from those acquired at higher operating frequencies hampers their direct comparison. Hence, this study explored the applications of accessible software options for predicting these parameters in the 1 H NMR profiles of analytes as a function of magnetic field strength; this was performed for individual analytes and also for complex biofluid matrices featured in metabolomics investigations. For this purpose, results from the very first successful experimental acquisition and simulation of the 1 H NMR profiles of intact human salivary supernatant samples on a 60 MHz benchtop spectrometer were evaluated. Using salivary metabolite concentrations determined at 400 MHz, it was demonstrated that simulation of the low-field spectra of five biomolecules with the most prominent 1 H resonances detectable allowed multiple component fits to be applied to experimental spectra. Hence, these salivary 1 H NMR profiles could be successfully predicted throughout the 45-600 MHz operating frequency range. With the exception of propionate resonance multiplets, which revealed more complex coupling patterns at low field and required more astute computational and fitting options, valuable quantitative metabolomics data on salivary acetate, formate, methanol and glycine could be attained from low-field spectrometres. These studies are both timely and pertinent in view of the recent advancement of low-field benchtop NMR facilities for diagnostically significant biomarker tracking in biofluids. Experiments performed with added ammonium chloride to facilitate the release of salivary metabolites from biopolymer binding sites provided evidence that a small but nevertheless significant proportion of propionate, but not lactate, was bound to such sites, an observation of much relevance to biomolecule quantification in salivary metabolomics investigations.
Collapse
Affiliation(s)
- Mark Edgar
- Department of Chemistry, University of Loughborough, Loughborough, UK
| | - Stefan Kuhn
- School of Computer Science and Informatics, De Montfort University, Leicester, UK
| | - Georgina Page
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
10
|
Imamura K, Yokogawa D, Higashi M, Sato H. Reference interaction site model self-consistent field with constrained spatial electron density approach for nuclear magnetic shielding in solution. J Chem Phys 2022; 157:204105. [DOI: 10.1063/5.0122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We propose a new hybrid approach combining quantum chemistry and statistical mechanics of liquids for calculating the nuclear magnetic resonance (NMR) chemical shifts of solvated molecules. Based on the reference interaction site model self-consistent field with constrained spatial electron density distribution (RISM–SCF–cSED) method, the electronic structure of molecules in solution is obtained, and the expression for the nuclear magnetic shielding tensor is derived as the second-order derivative of the Helmholtz energy of the solution system. We implemented a method for calculating chemical shifts and applied it to an adenine molecule in water, where hydrogen bonding plays a crucial role in electronic and solvation structures. We also performed the calculations of 17O chemical shifts, which showed remarkable solvent dependence. While converged results could not be sometimes obtained using the conventional method, in the present framework with RISM–SCF–cSED, an adequate representation of electron density is guaranteed, making it possible to obtain an NMR shielding constant stably. This introduction of cSED is key to extending the method’s applicability to obtain the chemical shift of various chemical species. The present demonstration illustrates our approach’s superiority in terms of numerical robustness and accuracy.
Collapse
Affiliation(s)
- Kosuke Imamura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
11
|
Ukhanev SA, Fedorov SV, Rusakov YY, Rusakova IL, Krivdin LB. Fluorine spin-spin coupling constants of pentafluorobenzene revisited at the ab initio correlated levels. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:901-914. [PMID: 35470458 DOI: 10.1002/mrc.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
All possible spin-spin coupling constants, 19 F-19 F, 19 F-13 C, and 19 F-1 H, of pentafluorobenzene were calculated at five different levels of theory, HF, DFT, SOPPA (CCSD), CCSD, and the SOPPA (CCSD)-based composite scheme with taking into account solvent, vibrational, relativistic, and correlation corrections. Most corrections were next to negligible for the long-range couplings but quite essential for the one-bond carbon-fluorine coupling constants. Hartree-Fock calculations were found to be entirely unreliable, while DFT results were comparable in accuracy with the data obtained using the wave function-based methods.
Collapse
Affiliation(s)
- Stepan A Ukhanev
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Sergei V Fedorov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Yuriy Y Rusakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Irina L Rusakova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
12
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
13
|
Quantum Chemical Approaches to the Calculation of NMR Parameters: From Fundamentals to Recent Advances. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quantum chemical methods for the calculation of indirect NMR spin–spin coupling constants and chemical shifts are always in progress. They never stay the same due to permanently developing computational facilities, which open new perspectives and create new challenges every now and then. This review starts from the fundamentals of the nonrelativistic and relativistic theory of nuclear magnetic resonance parameters, and gradually moves towards the discussion of the most popular common and newly developed methodologies for quantum chemical modeling of NMR spectra.
Collapse
|
14
|
Krivdin LB. Computational NMR of charged systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:8-79. [PMID: 34355823 DOI: 10.1002/mrc.5201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This review covers NMR computational aspects of charged systems-carbocations, heterocations, and heteroanions, which were extensively studied in a number of laboratories worldwide, first of all, at the Loker Hydrocarbon Research Institute in California directed for several decades by a distinguished scientist, the Nobel laureate George Andrew Olah. The first part of the review briefly outlines computational background of the modern theoretical methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the historical results, advances, and perspectives of the computational NMR of classical carbocations like methyl cation, CH3+ , and protonated methane, CH5+ , together with their numerous homologs and derivatives. The third and the forth parts of this survey are focused on the NMR computational aspects of accordingly, heterocations and heteroanions, the organic and inorganic ions with a charge localized mainly on heteroatoms like boron, oxygen, nitrogen, and heavier elements.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
15
|
Semenov VA, Krivdin LB. Computational NMR of natural products. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Krivdin LB. Computational NMR of heavy nuclei involving 109Ag, 113Cd, 119Sn, 125Te, 195Pt, 199Hg, 205Tl, and 207Pb. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The isotopically enriched cyanide anion, (13C≡15N)−, has a great potential as the NMR probe of non-covalent interactions. However, hydrogen cyanide is highly toxic and can decompose explosively. It is therefore desirable to be able to theoretically estimate any valuable results of certain experiments in advance in order to carry out experimental studies only for the most suitable molecular systems. We report the effect of hydrogen bonding on NMR properties of 15N≡13CH···X and 13C≡15NH···X hydrogen bonding complexes in solution, where X = 19F, 15N, and O=31P, calculated at the ωB97XD/def2tzvp and the polarizable continuum model (PCM) approximations. In many cases, the isotropic 13C and 15N chemical shieldings of the cyanide anion are not the most informative NMR properties of such complexes. Instead, the anisotropy of these chemical shieldings and the values of scalar coupling constants, including those across hydrogen bonds, can be used to characterize the geometry of such complexes in solids and solutions. 1J(15N13C) strongly correlates with the length of the N≡C bond.
Collapse
|
18
|
A 13C chemical shifts study of iodopyrazoles: experimental results and relativistic and non-relativistic calculations. Struct Chem 2021. [DOI: 10.1007/s11224-021-01755-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Krivdin LB. Computational NMR of Carbohydrates: Theoretical Background, Applications, and Perspectives. Molecules 2021; 26:molecules26092450. [PMID: 33922318 PMCID: PMC8122784 DOI: 10.3390/molecules26092450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
This review is written amid a marked progress in the calculation of NMR parameters of carbohydrates substantiated by a vast amount of experimental data coming from several laboratories worldwide. By no means are we trying to cover in the present compilation a huge amount of all available data. The main idea of the present review was only to outline general trends and perspectives in this dynamically developing area on the background of a marked progress in theoretical and computational NMR. Presented material is arranged in three basic sections: (1)-a brief theoretical introduction; (2)-applications and perspectives in computational NMR of monosaccharides; and (3)-calculation of NMR chemical shifts and spin-spin coupling constants of di- and polysaccharides.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia
| |
Collapse
|
20
|
Krivdin LB. Recent advances in computational liquid-phase 77Se NMR. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review aims to highlight significant progress in the calculation of 77Se NMR chemical shifts and spin – spin coupling constants involving selenium substantiated with a vast amount of experimental data. The material is arranged in two basic sections: the first one dealing with the calculation of 77Se NMR chemical shifts and the second one dealing with the computation of spin – spin coupling constants involving 77Se nucleus, namely 77Se–1H, 77Se–13C and 77Se–77Se together with some more exotic types of couplings, 77Se – 15N, 77Se–19F, 77Se–29Si and 77Se–31P. A special attention is focused on the stereoelectronic effects involving selenium atom and their manifestation in the 77Se NMR spectra of organoselenium compounds studied with the aid of the modern calculation of 77Se NMR parametres in combination with experimental results.
The bibliography includes 114 references.
Collapse
|
21
|
Fedorov SV, Krivdin LB. Computational Protocols for the 19F NMR Chemical Shifts. Part 1: Methodological Aspects. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Benedetti M, De Castro F, Papadia P, Antonucci D, Fanizzi FP. 195
Pt and
15
N NMR Data in Square Planar Platinum(II) Complexes of the Type [Pt(NH
3
)
a
X
b
]
n
(X
b
= Combination of Halides): “
NMR Effective Molecular Radius
” of Coordinated Ammonia. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Daniela Antonucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Francesco P. Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| |
Collapse
|
23
|
Ji X, Gonnella NC, Xin D. Deconvolution of fast exchange equilibrium states in NMR spectroscopy using virtual reference standards and probability theory. Org Biomol Chem 2020; 18:6927-6934. [PMID: 32936188 DOI: 10.1039/d0ob01459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A methodology for deconvolution of fast exchange equilibrium states in NMR spectroscopy (DFEQNMR) was developed based on DFT-GIAO NMR chemical shift prediction and a probability theory algorithm. Proof-of-concept studies were performed to estimate the protonation state of N-containing organic molecules involving fast proton exchange equilibrium and evaluate the solution tautomerism of a purine derivative. DFT-GIAO calculations were optimized to achieve good accuracy in 13C, 1H and 15N chemical shift prediction for protonated species. The probability theory algorithm enabled the determination of solution species ratios and yielded 95% confidence regions by comparing experimental and simulated chemical shift data sets. The calculation showed good accuracy for model partial salts with various functionalities and application in structure elucidation of complex natural product partial salts was also demonstrated. This method showed promising potential in acquisition of important insight into fast exchange equilibrium systems with only one experimental NMR chemical shift data set.
Collapse
Affiliation(s)
- Xiaozhou Ji
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
24
|
|
25
|
Marín-Luna M, Claramunt RM, López C, Pérez-Torralba M, Sanz D, Reviriego F, Alkorta I, Elguero J. A GIPAW versus GIAO-ZORA-SO study of 13C and 15N CPMAS NMR chemical shifts of aromatic and heterocyclic bromo derivatives. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 108:101676. [PMID: 32640403 DOI: 10.1016/j.ssnmr.2020.101676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Theoretical simulation of NMR parameters in compounds bearing heavy atoms generally requires the application of relativistic corrections. We report herein the theoretical characterization of 13C and 15N CPMAS NMR of known bromo-derivative crystals by using both the GIPAW and the combined GIAO-ZORA-SO approximation methods. Several statistical analyses were performed to compare both approaches, with non-relativistic GIPAW method being more useful to predict the 13C and 15N chemical shifts. The problem of applying GIPAW to crystal structures showing static or dynamic crystalline disorder of the special class resulting in half-protons will be discussed in detail.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain.
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Concepción López
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Marta Pérez-Torralba
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040, Madrid, Spain
| | - Felipe Reviriego
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| |
Collapse
|
26
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
27
|
Semenov VA, Samultsev DO, Krivdin LB. Four-component relativistic computational NMR study of ferrous, cobalt and nickel bisglycinates. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Krivdin LB. Recent advances in computational 31 P NMR: Part 1. Chemical shifts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:478-499. [PMID: 31703153 DOI: 10.1002/mrc.4965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
This is the first part of two closely related reviews dealing with the computation of phosphorus-31 nuclear magnetic resonance chemical shifts in a wide series of organophosphorus compounds including complexes, clusters, and bioorganic phosphorus compounds. In particular, the analysis of the accuracy factors, such as substitution effects, solvent effects, vibrational corrections, and relativistic effects, is presented. This review is dedicated to the Full Member of the Russian Academy of Sciences Professor Boris A. Trofimov in view of his invaluable contribution to the field of synthesis, nuclear magnetic resonance, and computation studies of organophosphorus compounds.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
- Angarsk State Technical University, Irkutsk Region, Russia
| |
Collapse
|
29
|
Krivdin LB. Recent advances in computational 31 P NMR: Part 2. Spin-spin coupling constants. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:500-511. [PMID: 31808570 DOI: 10.1002/mrc.4973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
This is the second part of two closely related reviews dealing with the computation of 31 P nuclear magnetic resonance (NMR) parameters in a wide range of phosphorous containing compounds. The first part of this review concentrated primarily on the computation of 31 P NMR chemical shifts, whereas the second part concerns the calculation of spin-spin coupling constants involving phosphorus nucleus, focusing primarily on their stereochemical dependencies and stereodynamic behavior in particular classes of organophosphorus compounds. This review is dedicated to the Full Member of the Russian Academy of Sciences Professor Boris A. Trofimov in view of his invaluable contribution to the field of synthesis, NMR, and computation studies of organophosphorus compounds.
Collapse
Affiliation(s)
- Leonid B Krivdin
- Siberian Branch of the Russian Academy of Sciences, A. E. Favorsky Irkutsk Institute of Chemistry, Irkutsk, Russia
- Department of Chemistry, Angarsk State Technical University, Angarsk, Russia
| |
Collapse
|
30
|
Semenov VA, Samultsev DO, Krivdin LB. The 1 H and 13 C NMR chemical shifts of Strychnos alkaloids revisited at the DFT level. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:532-539. [PMID: 31663170 DOI: 10.1002/mrc.4948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The density functional theory calculation of 1 H and 13 C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine skeleton was performed at the PBE0/pcSseg-2//pcseg-2 level. It was found that calculated 1 H and 13 C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons, so that a mean absolute percentage error was as small as ~1% in both cases.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
31
|
Santos Hurtado C, Bastien G, Mašát M, Štoček JR, Dračínský M, Rončević I, Císařová I, Rogers CT, Kaleta J. Regular Two-Dimensional Arrays of Surface-Mounted Molecular Switches: Switching Monitored by UV–vis and NMR Spectroscopy. J Am Chem Soc 2020; 142:9337-9351. [DOI: 10.1021/jacs.0c01753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Guillaume Bastien
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Mašát
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jakub Radek Štoček
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Igor Rončević
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Charles T. Rogers
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
32
|
Krivdin LB. Computational liquid-phase and solid-state 29Si NMR. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Liu X, Yu Q, Song A, Dong S, Hao J. Progress in nuclear magnetic resonance studies of surfactant systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Semenov VA, Krivdin LB. DFT computational schemes for 1 H and 13 C NMR chemical shifts of natural products, exemplified by strychnine. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:56-64. [PMID: 31291478 DOI: 10.1002/mrc.4922] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
A number of computational schemes based on different Density Functional Theory (DFT) functionals in combination with a number of basis sets were tested in the calculation of 1 H and 13 C NMR chemical shifts of strychnine, as a typical representative of the vitally important natural products, and used as a challenging benchmark and a rigorous test for such calculations. It was found that the most accurate computational scheme, as compared with experiment, was PBE0/pcSseg-4//pcseg-3 characterized by a mean absolute error of 0.07 ppm for the range of about 7 ppm for 1 H NMR chemical shifts and that of only 1.13 ppm for 13 C NMR chemical shifts spread over the range of about 150 ppm. For more practical purposes, including investigation of larger molecules from this series, a much more economical computational scheme, PBE0/pcSseg-2//pcseg-2, characterized by almost the same accuracy and much less computational demand, was recommended.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
35
|
Krivdin LB. Computational 1 H NMR: Part 3. Biochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:15-30. [PMID: 31286566 DOI: 10.1002/mrc.4895] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
This is the third and the last part of three closely interrelated reviews dealing with computation of 1 H nuclear magnetic resonance chemical shifts and 1 H-1 H spin-spin coupling constants. Present review deals with the computation of these parameters in biologically active natural products, carbohydrates, and other molecules of biological origin focusing on stereochemical applications of computational 1 H nuclear magnetic resonance to these objects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
- Department of Chemistry, Angarsk State Technical University, Angarsk, Russia
| |
Collapse
|
36
|
Krivdin LB. Computational 1 H NMR: Part 2. Chemical applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:5-14. [PMID: 31125992 DOI: 10.1002/mrc.4896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/12/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
This is the second one of three closely interrelated reviews dealing with computation of 1 H NMR chemical shifts and 1 H-1 H spin-spin coupling constants prepared for Magnetic Resonance in Chemistry. Presented in this review are some basic notes and illustrative examples of how modern computational 1 H NMR could be used for structural elucidation and stereoelectronic studies of the medium-sized organic molecules involving saturated, unsaturated, aromatic, and heteroaromatic compounds together with their functional derivatives and coordination complexes to get deeper insight into their stereochemical structure and stereodynamic behavior.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
- Chair of Chemistry, Angarsk State Technical University, Tchaikovsky St. 60, 665835, Angarsk, Russia
| |
Collapse
|
37
|
Rusakova IL, Rusakov YY. On the heavy atom on light atom relativistic effect in the NMR shielding constants of phosphine tellurides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:1071-1083. [PMID: 31077441 DOI: 10.1002/mrc.4889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/27/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The relativistic HALA effect has been shown to depend on the spatial deformation of the lone electron pairs of a heavy atom, as demonstrated for alkyl and alkene phosphine tellurides. It was found that HALA effect on phosphorous nuclear magnetic resonance shielding constant is strongly dependent on the spatial arrangements of light substituents on phosphorus, resulting in the deformation of the lone electron pairs of tellurium.
Collapse
Affiliation(s)
- Irina L Rusakova
- A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS, Irkutsk, Russia
| | - Yuriy Yu Rusakov
- A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS, Irkutsk, Russia
| |
Collapse
|
38
|
Krivdin LB. Computational 1 H NMR: Part 1. Theoretical background. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:897-914. [PMID: 30963636 DOI: 10.1002/mrc.4873] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
This is the first one of the three closely interrelated reviews to be published in Magnetic Resonance in Chemistry dealing with accordingly theoretical background, chemical applications, and biochemical studies of and by means of computational 1 H NMR. Presented in the first part of the review is a general outline of the modern theoretical methods and accuracy factors of computational 1 H NMR involving locally dense basis set schemes, solvent effects, vibrational corrections, and relativistic effects performed at the density functional theory and/or nonempirical levels. This review is dedicated to Prof. Stephan Sauer in view of his invaluable contribution to the field of computational nuclear magnetic resonance.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
- Angarsk State Technical University, Angarsk, Russia
| |
Collapse
|
39
|
Semenov VA, Samultsev DO, Krivdin LB. Calculation of 15N NMR Chemical Shifts in a Diversity of Nitrogen-Containing Compounds Using Composite Method Approximation at the DFT, MP2, and CCSD Levels. J Phys Chem A 2019; 123:8417-8426. [PMID: 31465226 DOI: 10.1021/acs.jpca.9b06780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computations of 15N NMR chemical shifts in 93 diverse nitrogen-containing compounds representing almost all known classes are performed at the density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), and coupled cluster singles and doubles (CCSD) levels using the composite method approximation (CMA) in comparison with experimental results. It is shown that the CMA-DFT and CMA-CCSD methods provided the best performance characterized by a normalized mean absolute error of 1.1-1.3% as compared to 2.3% for the CMA-MP2 results. Taking into account solvent effects within the conductor-like polarizable continuum model decreased the normalized mean absolute error by 0.4% for the CMA-DFT and by 0.2% for the CMA-CCSD calculations.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry , Siberian Branch of the Russian Academy of Sciences , Favorsky St. 1 , 664033 Irkutsk , Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry , Siberian Branch of the Russian Academy of Sciences , Favorsky St. 1 , 664033 Irkutsk , Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry , Siberian Branch of the Russian Academy of Sciences , Favorsky St. 1 , 664033 Irkutsk , Russia
| |
Collapse
|
40
|
Semenov VA, Samultsev DO, Krivdin LB. DFT computational schemes for 15 N NMR chemical shifts of the condensed nitrogen-containing heterocycles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:346-358. [PMID: 30769377 DOI: 10.1002/mrc.4851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
A systematic density functional theory (DFT) study of the accuracy factors (functionals, basis sets, and solvent effects) for the computation of 15 N NMR chemical shifts has been performed in the series of condensed nitrogen-containing heterocycles. The behavior of the most representative functionals was examined based on the benchmark calculations of 15 N NMR chemical shifts in the reference set of compounds. It was found that the best agreement with experiment was achieved with OLYP functional in combination with aug-pcS-3(N)//pc-2 locally dense basis set scheme providing mean absolute error of 5.2 ppm in the range of about 300 ppm. Taking into account solvent effects was performed within a general Tomasi's polarizable continuum model scheme. It was also found that computationally demanding supermolecular solvation model computations essentially improved some "difficult" cases, as was illustrated with phenanthroline dissolved in methanol. Based on the performed calculations, some 200 unknown 15 N NMR chemical shifts were predicted with a high level of confidence for about 50 real-life condensed nitrogen-containing heterocycles, which could serve as a practical guide in structural elucidation of this class of compounds.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
41
|
Knitsch R, Han D, Anke F, Ibing L, Jiao H, Hansen MR, Beweries T. Fe(II) Hydride Complexes for the Homogeneous Dehydrocoupling of Hydrazine Borane: Catalytic Mechanism via DFT Calculations and Detailed Spectroscopic Characterization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert Knitsch
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Delong Han
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Felix Anke
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Lukas Ibing
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- MEET Battery Research
Center, Westfälische Wilhelms-Universität Münster, Corrensstr. 46, 48149 Münster, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Torsten Beweries
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
42
|
Krivdin LB. Computational protocols for calculating 13C NMR chemical shifts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:103-156. [PMID: 31481156 DOI: 10.1016/j.pnmrs.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The most recent results dealing with the computation of 13C NMR chemical shifts in chemistry (small molecules, saturated, unsaturated and aromatic compounds, heterocycles, functional derivatives, coordination complexes, carbocations, and natural products) are reviewed, paying special attention to theoretical background and accuracy, the latter involving solvent effects, vibrational corrections, and relativistic effects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
43
|
Semenov VA, Samultsev DO, Rusakova IL, Krivdin LB. Computational Multinuclear NMR of Platinum Complexes: A Relativistic Four-Component Study. J Phys Chem A 2019; 123:4908-4920. [DOI: 10.1021/acs.jpca.9b02867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentin A. Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Dmitry O. Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Irina L. Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - Leonid B. Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| |
Collapse
|
44
|
Semenov VA, Rusakov YY, Samultsev DO, Krivdin LB. Geometries and NMR properties of cisplatin and transplatin revisited at the four-component relativistic level. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Zhu JS, Li CJ, Tsui KY, Kraemer N, Son JH, Haddadin MJ, Tantillo DJ, Kurth MJ. Accessing Multiple Classes of 2 H-Indazoles: Mechanistic Implications for the Cadogan and Davis-Beirut Reactions. J Am Chem Soc 2019; 141:6247-6253. [PMID: 30912441 DOI: 10.1021/jacs.8b13481] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Cadogan cyclization is a robust but harsh method for the synthesis of 2 H-indazoles, a valuable class of nitrogen heterocycles. Although nitrene generation by exhaustive deoxygenation is widely accepted as the operating mechanism in the reductive cyclization of nitroaromatics, non-nitrene pathways have only been theorized previously. Here, 2 H-indazole N-oxides were synthesized through an interrupted Cadogan/Davis-Beirut reaction and are presented as direct evidence of competent oxygenated intermediates; mechanistic implications for both reactions are discussed. Isolation and characterization of these N-oxides enabled a formal Cadogan cyclization at room temperature for 2 H-indazole synthesis.
Collapse
Affiliation(s)
- Jie S Zhu
- Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Clarabella J Li
- Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Ka Yi Tsui
- Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Niklas Kraemer
- Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Jung-Ho Son
- Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Makhluf J Haddadin
- Department of Chemistry , American University of Beirut , Beirut 1107 2020 , Lebanon
| | - Dean J Tantillo
- Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis , California 95616 , United States
| | - Mark J Kurth
- Department of Chemistry , University of California Davis , 1 Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
46
|
Hahn J, Krieg M, Keck C, Maichle-Mössmer C, Fink RF, Bettinger HF. Thermal dehydrochlorination in the 4-fluoroaniline-trichloroborane system: identification of reactive intermediates involved in the formation of B,B',B''-trichloro-N,N',N''-tri((4-fluoro)phenyl)borazine. Dalton Trans 2018; 47:17304-17316. [PMID: 30475357 DOI: 10.1039/c8dt03954b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Borazines are used in chemical vapor deposition processes to produce hybrid graphene-boron nitride nanostructures. As the knowledge on the mechanism of borazine formation is scarce, we studied the mechanism of formation of B,B',B''-trichloro-N,N',N''-tri(p-fluorophenyl)borazine (3a) from p-fluoroaniline and boron trichloride employing NMR spectroscopy, X-ray single crystal structure analysis, trapping experiments, and computational chemistry methods up to the coupled cluster CCSD(T) level of theory. These studies suggest the initial formation of the 1 : 1 adduct 1a (ArNH2BCl3, Ar = 4-fluorophenyl) with a dative B-N bond that could be fully characterized including single crystal X-ray diffraction. Adduct 1a undergoes unimolecular hydrogen chloride elimination with a first-order rate constant of k1 = 3.03(7) × 10-2 min-1 in toluene at 100 °C. This rate constant is in very good agreement with the one derived (k1 = 3.18 × 10-2 min-1) from computed activation parameters (ΔH‡373.15 = 28.1 kcal mol-1, ΔS‡373.15 = 1.56 eu, ΔG‡373.15 = 27.6 kcal mol-1). The product of the first hydrogen chloride evolution is anilinodichloroborane ArNHBCl2 (2a). Compound 2a cannot be isolated in a pure form due to instability, but its presence as a transient reactive intermediate can be derived from NMR spectroscopy. Reactive intermediates other than anilinodichloroborane cannot be assigned by NMR spectroscopy. We propose that the mechanism of formation of borazine 3a involves the reaction of 2a with 4-fluoroaniline as the rate determining step.
Collapse
Affiliation(s)
- Jennifer Hahn
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Matthias Krieg
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Constanze Keck
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Reinhold F Fink
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Holger F Bettinger
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
47
|
Di Micco S, Giannini C, Previtali A, Lucenti E, Bifulco G. Chemical shift assignment of mono- and di-bromo triimidazo[1,2-a:1',2'-c:1″,2″-e][1,3,5]triazine derivatives by DFT/NMR integrated approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 57:82-92. [PMID: 30421826 DOI: 10.1002/mrc.4804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Mono- and di-bromo derivatives of triimidazo[1,2-a:1',2'-c:1″,2″-e][1,3,5]triazine have been proposed as new organic molecules presenting a very rich and complex photophysical behavior. Thus, we afforded the correct chemical shift assignment by integrating the experimental data with DFT calculation of NMR parameters. Our findings lay foundation for a structural reference in the organic synthesis and characterization of new congeners of this intriguing class of molecules.
Collapse
Affiliation(s)
- Simone Di Micco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Clelia Giannini
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Andrea Previtali
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Elena Lucenti
- ISTM-CNR, Institute of Molecular Science and Technologies, INSTM RU, National Interuniversity Consortium of Material Science and Technology, Milan, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| |
Collapse
|
48
|
Elliott SJ, Kadeřávek P, Brown LJ, Sabba M, Glöggler S, O'Leary DJ, Brown RCD, Ferrage F, Levitt MH. Field-cycling long-lived-state NMR of 15N2 spin pairs. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1543906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stuart J. Elliott
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Pavel Kadeřávek
- Laboratoire des Biomolécules, Département de Chimie, Ecole Normale Supérieure, Paris, France
| | - Lynda J. Brown
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Mohamed Sabba
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG, Göttingen, Germany
| | - Daniel J. O'Leary
- Department of Chemistry, Pomona College, Claremont, California, United States of America
| | | | - Fabien Ferrage
- Laboratoire des Biomolécules, Département de Chimie, Ecole Normale Supérieure, Paris, France
| | - Malcolm H. Levitt
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
49
|
Krivdin LB. Theoretical calculations of carbon-hydrogen spin-spin coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 108:17-73. [PMID: 30538048 DOI: 10.1016/j.pnmrs.2018.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Structural applications of theoretical calculations of carbon-hydrogen spin-spin coupling constants are reviewed covering papers published mainly during the last 10-15 years with a special emphasis on the most notable studies of hybridization, substitution and stereoelectronic effects together with the investigation of hydrogen bonding and intermolecular interactions. The wide scope of different applications of calculated carbon-hydrogen couplings in the structural elucidation of particular classes of organic and bioorganic molecules is reviewed, concentrating mainly on saturated, unsaturated, aromatic and heteroaromatic compounds and their functional derivatives, as well as on natural compounds and carbohydrates. The review is dedicated to Professor Emeritus Michael Barfield in view of his invaluable pioneering contribution to this field.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
50
|
Semenov VA, Samultsev DO, Krivdin LB. GIAO-DFT calculation of 15 N NMR chemical shifts of Schiff bases: Accuracy factors and protonation effects. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:727-739. [PMID: 29427330 DOI: 10.1002/mrc.4721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
15 N NMR chemical shifts in the representative series of Schiff bases together with their protonated forms have been calculated at the density functional theory level in comparison with available experiment. A number of functionals and basis sets have been tested in terms of a better agreement with experiment. Complimentary to gas phase results, 2 solvation models, namely, a classical Tomasi's polarizable continuum model (PCM) and that in combination with an explicit inclusion of one molecule of solvent into calculation space to form supermolecule 1:1 (SM + PCM), were examined. Best results are achieved with PCM and SM + PCM models resulting in mean absolute errors of calculated 15 N NMR chemical shifts in the whole series of neutral and protonated Schiff bases of accordingly 5.2 and 5.8 ppm as compared with 15.2 ppm in gas phase for the range of about 200 ppm. Noticeable protonation effects (exceeding 100 ppm) in protonated Schiff bases are rationalized in terms of a general natural bond orbital approach.
Collapse
Affiliation(s)
- Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, Irkutsk, 664033, Russia
| |
Collapse
|