1
|
Pajkos M, Clerc I, Zanon C, Bernadó P, Cortés J. AFflecto: A web server to generate conformational ensembles of flexible proteins from AlphaFold models. J Mol Biol 2025:169003. [PMID: 40133775 DOI: 10.1016/j.jmb.2025.169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 03/27/2025]
Abstract
Intrinsically disordered proteins and regions (IDPs/IDRs) leverage their structural flexibility to fulfill essential cellular functions, with dysfunctions often linked to severe diseases. However, the relationships between their sequences, structural dynamics and functional roles remain poorly understood. Understanding these complex relationships is crucial for therapeutic development, highlighting the need for methods to generate plausible IDP/IDR conformational ensembles. While AlphaFold (AF) excels at modeling structured domains, it fails to accurately represent disordered regions, leaving a significant portion of proteomes inaccurately modeled. We present AFflecto, a user-friendly web server for generating large conformational ensembles of proteins that include both structured domains and IDRs from AF structural models. AFflecto identifies IDRs as tails, linkers or loops by analyzing their structural context. Additionally, it incorporates a method to identify conditionally folded IDRs that AF may incorrectly predict as natively folded elements. The conformational space is globally explored using efficient stochastic sampling algorithms. AFflecto's web interface allows users to customize the modeling, by modifying boundaries between ordered and disordered regions, and selecting among several sampling strategies. The web server is freely available at https://moma.laas.fr/applications/AFflecto/.
Collapse
Affiliation(s)
- Mátyás Pajkos
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
2
|
Orand T, Jensen MR. Binding mechanisms of intrinsically disordered proteins: Insights from experimental studies and structural predictions. Curr Opin Struct Biol 2025; 90:102958. [PMID: 39740355 DOI: 10.1016/j.sbi.2024.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes. Furthermore, we discuss the growing role of artificial intelligence, exemplified by AlphaFold, in identifying interaction sites within IDPs and predicting their bound-state structures. Our review highlights the powerful complementarity between experimental methods and artificial intelligence-based approaches in advancing our understanding of the intricate interaction landscape of IDPs.
Collapse
|
3
|
Higman VA, Płoskoń E, Thompson GS, Vuister GW. Perspective: on the importance of extensive, high-quality and reliable deposition of biomolecular NMR data in the age of artificial intelligence. JOURNAL OF BIOMOLECULAR NMR 2024; 78:193-197. [PMID: 39427279 PMCID: PMC11615007 DOI: 10.1007/s10858-024-00451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Artificial intelligence (AI) models are revolutionising scientific data analysis but are reliant on large training data sets. While artificial training data can be used in the context of NMR processing and data analysis methods, relating NMR parameters back to protein sequence and structure requires experimental data. In this perspective we examine what the biological NMR community needs to do, in order to store and share its data better so that we can make effective use of AI methods to further our understanding of biological molecules. We argue, first, that the community should be depositing much more of its experimental data. In particular, we should be depositing more spectra and dynamics data. Second, the NMR data deposited needs to capture the full information content required to be able to use and validate it adequately. The NMR Exchange Format (NEF) was designed several years ago to do this. The widespread adoption of NEF combined with a new proposal for dynamics data specifications come at the right time for the community to expand its deposition of data. Third, we highlight the importance of expanding and safeguarding our experimental data repository, the Biological Magnetic Resonance Data Bank (BMRB), not only in the interests of NMR spectroscopists, but biological scientists more widely. With this article we invite others in the biological NMR community to champion increased (possibly mandatory) data deposition, to get involved in designing new NEF specifications, and to advocate on behalf of the BMRB within the wider scientific community.
Collapse
Affiliation(s)
- Victoria A Higman
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Eliza Płoskoń
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Gary S Thompson
- Wellcome Trust Biological NMR Facility, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NZ, UK
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
4
|
Day EC, Chittari SS, Cunha KC, Zhao RJ, Dodds JN, Davis DC, Baker ES, Berlow RB, Shea JE, Kulkarni RU, Knight AS. A High-Throughput Workflow to Analyze Sequence-Conformation Relationships and Explore Hydrophobic Patterning in Disordered Peptoids. Chem 2024; 10:3444-3458. [PMID: 39582487 PMCID: PMC11580747 DOI: 10.1016/j.chempr.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Understanding how a macromolecule's primary sequence governs its conformational landscape is crucial for elucidating its function, yet these design principles are still emerging for macromolecules with intrinsic disorder. Herein, we introduce a high-throughput workflow that implements a practical colorimetric conformational assay, introduces a semi-automated sequencing protocol using MALDI-MS/MS, and develops a generalizable sequence-structure algorithm. Using a model system of 20mer peptidomimetics containing polar glycine and hydrophobic N-butylglycine residues, we identified nine classifications of conformational disorder and isolated 122 unique sequences across varied compositions and conformations. Conformational distributions of three compositionally identical library sequences were corroborated through atomistic simulations and ion mobility spectrometry coupled with liquid chromatography. A data-driven strategy was developed using existing sequence variables and data-derived 'motifs' to inform a machine learning algorithm towards conformation prediction. This multifaceted approach enhances our understanding of sequence-conformation relationships and offers a powerful tool for accelerating the discovery of materials with conformational control.
Collapse
Affiliation(s)
- Erin C. Day
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S. Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Keila C. Cunha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Roy J. Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - James N. Dodds
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Delaney C. Davis
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erin S. Baker
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca B. Berlow
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lead contact
| |
Collapse
|
5
|
González-Delgado J, Bernadó P, Neuvial P, Cortés J. Weighted families of contact maps to characterize conformational ensembles of (highly-)flexible proteins. Bioinformatics 2024; 40:btae627. [PMID: 39432675 PMCID: PMC11530230 DOI: 10.1093/bioinformatics/btae627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
MOTIVATION Characterizing the structure of flexible proteins, particularly within the realm of intrinsic disorder, presents a formidable challenge due to their high conformational variability. Currently, their structural representation relies on (possibly large) conformational ensembles derived from a combination of experimental and computational methods. The detailed structural analysis of these ensembles is a difficult task, for which existing tools have limited effectiveness. RESULTS This study proposes an innovative extension of the concept of contact maps to the ensemble framework, incorporating the intrinsic probabilistic nature of disordered proteins. Within this framework, a conformational ensemble is characterized through a weighted family of contact maps. To achieve this, conformations are first described using a refined definition of contact that appropriately accounts for the geometry of the inter-residue interactions and the sequence context. Representative structural features of the ensemble naturally emerge from the subsequent clustering of the resulting contact-based descriptors. Importantly, transiently populated structural features are readily identified within large ensembles. The performance of the method is illustrated by several use cases and compared with other existing approaches, highlighting its superiority in capturing relevant structural features of highly flexible proteins. AVAILABILITY AND IMPLEMENTATION An open-source implementation of the method is provided together with an easy-to-use Jupyter notebook, available at https://gitlab.laas.fr/moma/WARIO.
Collapse
Affiliation(s)
- Javier González-Delgado
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Pierre Neuvial
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| |
Collapse
|
6
|
Botova M, Camacho-Zarco AR, Tognetti J, Bessa LM, Guseva S, Mikkola E, Salvi N, Maurin D, Herrmann T, Blackledge M. A specific phosphorylation-dependent conformational switch in SARS-CoV-2 nucleocapsid protein inhibits RNA binding. SCIENCE ADVANCES 2024; 10:eaax2323. [PMID: 39093972 PMCID: PMC11296341 DOI: 10.1126/sciadv.aax2323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
The nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 encapsidates the viral genome and is essential for viral function. The central disordered domain comprises a serine-arginine-rich (SR) region that is hyperphosphorylated in infected cells. This modification regulates function, although mechanistic details remain unknown. We use nuclear magnetic resonance to follow structural changes occurring during hyperphosphorylation by serine arginine protein kinase 1, glycogen synthase kinase 3, and casein kinase 1, that abolishes interaction with RNA. When eight approximately uniformly distributed sites have been phosphorylated, the SR domain binds the same interface as single-stranded RNA, resulting in complete inhibition of RNA binding. Phosphorylation by protein kinase A does not prevent RNA binding, indicating that the pattern resulting from physiologically relevant kinases is specific for inhibition. Long-range contacts between the RNA binding, linker, and dimerization domains are abrogated, phenomena possibly related to genome packaging and unpackaging. This study provides insight into the recruitment of specific host kinases to regulate viral function.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmi Mikkola
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Damien Maurin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Torsten Herrmann
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | |
Collapse
|
7
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
8
|
Müller GA, Müller TD. Transfer of membrane(s) matter(s)-non-genetic inheritance of (metabolic) phenotypes? Front Mol Biosci 2024; 11:1347397. [PMID: 38516184 PMCID: PMC10955475 DOI: 10.3389/fmolb.2024.1347397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet. As a consequence, the fatty acid moieties of GPI-APs must be shielded from access of the aqueous environment by incorporation into membranes of extracellular vesicles or into micelle-like complexes together with (lyso)phospholipids and cholesterol. The GPI-APs released from somatic cells and tissues are transferred via those complexes or EVs to somatic as well as pluripotent stem cells with metabolic consequences, such as upregulation of glycogen and lipid synthesis. From these and additional findings, the following hypotheses are developed: i) Transfer of GPI-APs via EVs or micelle-like complexes leads to the induction of new phenotypes in the daughter cells or zygotes, which are presumably not restricted to metabolism. ii) The membrane topographies transferred by the concerted action of GPI-APs and interacting components are replicated by self-organization and self-templation and remain accessible to structural changes by environmental factors. iii) Transfer from mother cells and gametes to their daughter cells and zygotes, respectively, is not restricted to DNA and genes, but also encompasses non-genetic matter, such as GPI-APs and specific membrane constituents. iv) The intergenerational transfer of membrane matter between mammalian organisms is understood as an epigenetic mechanism for phenotypic plasticity, which does not rely on modifications of DNA and histones, but is regarded as molecular mechanism for the inheritance of acquired traits, such as complex metabolic diseases. v) The missing interest in research of non-genetic matter of inheritance, which may be interpreted in the sense of Darwin's "Gemmules" or Galton's "Stirps", should be addressed in future investigations of the philosophy of science and sociology of media.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Media Studies, Media, Culture and Society, Faculty of Arts and Humanities, University Paderborn, Paderborn, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
| |
Collapse
|
9
|
Heravi S, Power JVD, Yethiraj A, Booth V. The effects of biological crowders on fibrillization, structure, diffusion, and conformational dynamics of α-synuclein. Protein Sci 2024; 33:e4894. [PMID: 38358134 PMCID: PMC10868423 DOI: 10.1002/pro.4894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
α-synuclein is an intrinsically disordered protein (IDP) whose aggregation in presynaptic neuronal cells is a pathological hallmark of Lewy body formation and Parkinson's disease. This aggregation process is likely affected by the crowded macromolecular cellular environment. In this study, α-synuclein was studied in the presence of both a synthetic crowder, Ficoll70, and a biological crowder composed of lysed cells that better mimics the biocomplexity of the cellular environment. 15 N-1 H HSQC NMR results show similar α-synuclein chemical shifts in non-crowded and all crowded conditions implying that it remains similarly unstructured in all conditions. Nevertheless, both HSQC NMR and fluorescence measurements indicate that, only in the cell lysate, α-synuclein forms aggregates over a timescale of 48 h. 15 N-edited diffusion measurements indicate that all crowders slow down the α-synuclein's diffusivity. Interestingly, at high concentrations, α-synuclein diffuses faster in cell lysate than in Ficoll70, possibly due to additional soft (e.g., electrostatic or hydrophobic) interactions. 15 N-edited relaxation measurements show that some residues are more mobile in cell lysate than in Ficoll70; the rates that are most different are predominantly in hydrophobic residues. We thus examined cell lysates with reduced hydrophobicity and found slower dynamics (higher relaxation rates) in several α-synuclein residues. Taken together, these experiments suggest that while cell lysate does not substantially affect α-synuclein structure (HSQC spectra), it does affect chain dynamics and translational diffusion, and strongly affects aggregation over a timescale of days, in a manner that is different from either no crowder or an artificial crowder: soft hydrophobic interactions are implicated.
Collapse
Affiliation(s)
- Sina Heravi
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Jude Vincent Dobbin Power
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Anand Yethiraj
- Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Valerie Booth
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
- Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|
10
|
Vedel IM, Papagiannoula A, Naudi-Fabra S, Milles S. Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems. Curr Opin Struct Biol 2023; 82:102659. [PMID: 37499445 PMCID: PMC10565672 DOI: 10.1016/j.sbi.2023.102659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Many proteins require different structural states or conformations for function, and intrinsically disordered proteins, i.e. proteins without stable three-dimensional structure, are certainly an extreme. Single molecule fluorescence and nuclear magnetic resonance (NMR) spectroscopy are both exceptionally well suited to decipher and describe these states and their interconversion. Different time scales, from picoseconds to several milliseconds, can be addressed by both techniques. The length scales probed and the sample requirements (e.g. concentration, molecular weight, sample complexity) are, however, vastly different, making NMR and single molecule fluorescence an excellent combination for integrated studies. Here, we review recently undertaken approaches for the combined use of NMR and single molecule fluorescence to study protein dynamics.
Collapse
Affiliation(s)
- Ida Marie Vedel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Andromachi Papagiannoula
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Samuel Naudi-Fabra
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
11
|
Upadhyay A, Ekenna C. A New Tool to Study the Binding Behavior of Intrinsically Disordered Proteins. Int J Mol Sci 2023; 24:11785. [PMID: 37511544 PMCID: PMC10380747 DOI: 10.3390/ijms241411785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Understanding the binding behavior and conformational dynamics of intrinsically disordered proteins (IDPs) is crucial for unraveling their regulatory roles in biological processes. However, their lack of stable 3D structures poses challenges for analysis. To address this, we propose an algorithm that explores IDP binding behavior with protein complexes by extracting topological and geometric features from the protein surface model. Our algorithm identifies a geometrically favorable binding pose for the IDP and plans a feasible trajectory to evaluate its transition to the docking position. We focus on IDPs from Homo sapiens and Mus-musculus, investigating their interaction with the Plasmodium falciparum (PF) pathogen associated with malaria-related deaths. We compare our algorithm with HawkDock and HDOCK docking tools for quantitative (computation time) and qualitative (binding affinity) measures. Our results indicated that our method outperformed the compared methods in computation performance and binding affinity in experimental conformations.
Collapse
Affiliation(s)
- Aakriti Upadhyay
- Department of Computer Science, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Chinwe Ekenna
- Department of Computer Science, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
12
|
Fouillen A, Bous J, Granier S, Mouillac B, Sounier R. Bringing GPCR Structural Biology to Medical Applications: Insights from Both V2 Vasopressin and Mu-Opioid Receptors. MEMBRANES 2023; 13:606. [PMID: 37367810 PMCID: PMC10303988 DOI: 10.3390/membranes13060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
G-protein coupled receptors (GPCRs) are versatile signaling proteins that regulate key physiological processes in response to a wide variety of extracellular stimuli. The last decade has seen a revolution in the structural biology of clinically important GPCRs. Indeed, the improvement in molecular and biochemical methods to study GPCRs and their transducer complexes, together with advances in cryo-electron microscopy, NMR development, and progress in molecular dynamic simulations, have led to a better understanding of their regulation by ligands of different efficacy and bias. This has also renewed a great interest in GPCR drug discovery, such as finding biased ligands that can either promote or not promote specific regulations. In this review, we focus on two therapeutically relevant GPCR targets, the V2 vasopressin receptor (V2R) and the mu-opioid receptor (µOR), to shed light on the recent structural biology studies and show the impact of this integrative approach on the determination of new potential clinical effective compounds.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
- Centre de Biochimie Structurale (CBS), Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Julien Bous
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Remy Sounier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| |
Collapse
|
13
|
Abstract
There are over 100 computational predictors of intrinsic disorder. These methods predict amino acid-level propensities for disorder directly from protein sequences. The propensities can be used to annotate putative disordered residues and regions. This unit provides a practical and holistic introduction to the sequence-based intrinsic disorder prediction. We define intrinsic disorder, explain the format of computational prediction of disorder, and identify and describe several accurate predictors. We also introduce recently released databases of intrinsic disorder predictions and use an illustrative example to provide insights into how predictions should be interpreted and combined. Lastly, we summarize key experimental methods that can be used to validate computational predictions. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
14
|
Paladino A, Vitagliano L, Graziano G. The Action of Chemical Denaturants: From Globular to Intrinsically Disordered Proteins. BIOLOGY 2023; 12:biology12050754. [PMID: 37237566 DOI: 10.3390/biology12050754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Proteins perform their many functions by adopting either a minimal number of strictly similar conformations, the native state, or a vast ensemble of highly flexible conformations. In both cases, their structural features are highly influenced by the chemical environment. Even though a plethora of experimental studies have demonstrated the impact of chemical denaturants on protein structure, the molecular mechanism underlying their action is still debated. In the present review, after a brief recapitulation of the main experimental data on protein denaturants, we survey both classical and more recent interpretations of the molecular basis of their action. In particular, we highlight the differences and similarities of the impact that denaturants have on different structural classes of proteins, i.e., globular, intrinsically disordered (IDP), and amyloid-like assemblies. Particular attention has been given to the IDPs, as recent studies are unraveling their fundamental importance in many physiological processes. The role that computation techniques are expected to play in the near future is illustrated.
Collapse
Affiliation(s)
- Antonella Paladino
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
15
|
Elena-Real CA, Sagar A, Urbanek A, Popovic M, Morató A, Estaña A, Fournet A, Doucet C, Lund XL, Shi ZD, Costa L, Thureau A, Allemand F, Swenson RE, Milhiet PE, Crehuet R, Barducci A, Cortés J, Sinnaeve D, Sibille N, Bernadó P. The structure of pathogenic huntingtin exon 1 defines the bases of its aggregation propensity. Nat Struct Mol Biol 2023; 30:309-320. [PMID: 36864173 DOI: 10.1038/s41594-023-00920-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/05/2023] [Indexed: 03/04/2023]
Abstract
Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the first exon of the HTT gene, resulting in an extended polyglutamine (poly-Q) tract in huntingtin (httex1). The structural changes occurring to the poly-Q when increasing its length remain poorly understood due to its intrinsic flexibility and the strong compositional bias. The systematic application of site-specific isotopic labeling has enabled residue-specific NMR investigations of the poly-Q tract of pathogenic httex1 variants with 46 and 66 consecutive glutamines. Integrative data analysis reveals that the poly-Q tract adopts long α-helical conformations propagated and stabilized by glutamine side chain to backbone hydrogen bonds. We show that α-helical stability is a stronger signature in defining aggregation kinetics and the structure of the resulting fibrils than the number of glutamines. Our observations provide a structural perspective of the pathogenicity of expanded httex1 and pave the way to a deeper understanding of poly-Q-related diseases.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Amin Sagar
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Annika Urbanek
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Matija Popovic
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Anna Morató
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alejandro Estaña
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Aurélie Fournet
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Christine Doucet
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Xamuel L Lund
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
- Institute of Laue Langevin, Grenoble, France
| | - Zhen-Dan Shi
- The Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Luca Costa
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Frédéric Allemand
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Rolf E Swenson
- The Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Alessandro Barducci
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Davy Sinnaeve
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS, EMR9002, Integrative Structural Biology, Lille, France
| | - Nathalie Sibille
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Pau Bernadó
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
17
|
Zhuang JJ, Liu Q, Wu DL, Tie L. Current strategies and progress for targeting the "undruggable" transcription factors. Acta Pharmacol Sin 2022; 43:2474-2481. [PMID: 35132191 PMCID: PMC9525275 DOI: 10.1038/s41401-021-00852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
Collapse
Affiliation(s)
- Jing-Jing Zhuang
- Marine College, Shandong University, Weihai, 264209, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Da-Lei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Chaves-Arquero B, Martínez-Lumbreras S, Sibille N, Camero S, Bernadó P, Jiménez MÁ, Zorrilla S, Pérez-Cañadillas JM. eIF4G1 N-terminal intrinsically disordered domain is a multi-docking station for RNA, Pab1, Pub1, and self-assembly. Front Mol Biosci 2022; 9:986121. [PMID: 36213119 PMCID: PMC9537944 DOI: 10.3389/fmolb.2022.986121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Yeast eIF4G1 interacts with RNA binding proteins (RBPs) like Pab1 and Pub1 affecting its function in translation initiation and stress granules formation. We present an NMR and SAXS study of the N-terminal intrinsically disordered region of eIF4G1 (residues 1-249) and its interactions with Pub1, Pab1 and RNA. The conformational ensemble of eIF4G11-249 shows an α-helix within the BOX3 conserved element and a dynamic network of fuzzy π-π and π-cation interactions involving arginine and aromatic residues. The Pab1 RRM2 domain interacts with eIF4G1 BOX3, the canonical interaction site, but also with BOX2, a conserved element of unknown function to date. The RNA1 region interacts with RNA through a new RNA interaction motif and with the Pub1 RRM3 domain. This later also interacts with eIF4G1 BOX1 modulating its intrinsic self-assembly properties. The description of the biomolecular interactions involving eIF4G1 to the residue detail increases our knowledge about biological processes involving this key translation initiation factor.
Collapse
Affiliation(s)
- Belén Chaves-Arquero
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Santiago Martínez-Lumbreras
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Sergio Camero
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - M. Ángeles Jiménez
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC, Madrid, Spain
| | | |
Collapse
|
20
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
21
|
Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Biomolecules 2022; 12:biom12050617. [PMID: 35625550 PMCID: PMC9138321 DOI: 10.3390/biom12050617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Arrestin-dependent pathways are a central component of G protein-coupled receptor (GPCRs) signaling. However, the molecular processes regulating arrestin binding are to be further illuminated, in particular with regard to the structural impact of GPCR C-terminal disordered regions. Here, we used an integrated biophysical strategy to describe the basal conformations of the C-terminal domains of three class A GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR) and the β2-adernergic receptor (β2AR). By doing so, we revealed the presence of transient secondary structures in these regions that are potentially involved in the interaction with arrestin. These secondary structure elements differ from those described in the literature in interaction with arrestin. This suggests a mechanism where the secondary structure conformational preferences in the C-terminal regions of GPCRs could be a central feature for optimizing arrestins recognition.
Collapse
|
22
|
Camacho-Zarco AR, Schnapka V, Guseva S, Abyzov A, Adamski W, Milles S, Jensen MR, Zidek L, Salvi N, Blackledge M. NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins. Chem Rev 2022; 122:9331-9356. [PMID: 35446534 PMCID: PMC9136928 DOI: 10.1021/acs.chemrev.1c01023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Intrinsically disordered
proteins are ubiquitous throughout all
known proteomes, playing essential roles in all aspects of cellular
and extracellular biochemistry. To understand their function, it is
necessary to determine their structural and dynamic behavior and to
describe the physical chemistry of their interaction trajectories.
Nuclear magnetic resonance is perfectly adapted to this task, providing
ensemble averaged structural and dynamic parameters that report on
each assigned resonance in the molecule, unveiling otherwise inaccessible
insight into the reaction kinetics and thermodynamics that are essential
for function. In this review, we describe recent applications of NMR-based
approaches to understanding the conformational energy landscape, the
nature and time scales of local and long-range dynamics and how they
depend on the environment, even in the cell. Finally, we illustrate
the ability of NMR to uncover the mechanistic basis of functional
disordered molecular assemblies that are important for human health.
Collapse
Affiliation(s)
| | - Vincent Schnapka
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Serafima Guseva
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Anton Abyzov
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Wiktor Adamski
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Lukas Zidek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic
| | - Nicola Salvi
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
23
|
Cubuk J, Soranno A. Macromolecular crowding and intrinsically disordered proteins: a polymer physics perspective. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jasmine Cubuk
- Washington University in St Louis Biochemistry and Molecular Biophysics UNITED STATES
| | - Andrea Soranno
- Washington University in St Louis Biochemistry and Molecular Biophysics 660 St Euclid Ave 63110 St Louis UNITED STATES
| |
Collapse
|
24
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Nüesch MF, Ivanović MT, Claude JB, Nettels D, Best RB, Wenger J, Schuler B. Single-molecule Detection of Ultrafast Biomolecular Dynamics with Nanophotonics. J Am Chem Soc 2022; 144:52-56. [PMID: 34970909 DOI: 10.1021/jacs.1c09387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Single-molecule Förster resonance energy transfer (FRET) is a versatile technique for probing the structure and dynamics of biomolecules even in heterogeneous ensembles. However, because of the limited fluorescence brightness per molecule and the relatively long fluorescence lifetimes, probing ultrafast structural dynamics in the nanosecond time scale has thus far been very challenging. Here, we demonstrate that nanophotonic fluorescence enhancement in zero-mode waveguides enables measurements of previously inaccessible low-nanosecond dynamics by dramatically improving time resolution and reduces data acquisition times by more than an order of magnitude. As a prototypical example, we use this approach to probe the dynamics of a short intrinsically disordered peptide that were previously inaccessible with single-molecule FRET measurements. We show that we are now able to detect the low-nanosecond correlations in this peptide, and we obtain a detailed interpretation of the underlying distance distributions and dynamics in conjunction with all-atom molecular dynamics simulations, which agree remarkably well with the experiments. We expect this combined approach to be widely applicable to the investigation of very rapid biomolecular dynamics.
Collapse
Affiliation(s)
- Mark F Nüesch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Miloš T Ivanović
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Naudi-Fabra S, Blackledge M, Milles S. Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins. Biomolecules 2021; 12:biom12010027. [PMID: 35053175 PMCID: PMC8773649 DOI: 10.3390/biom12010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid–liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.
Collapse
|
27
|
Gruber T, Lewitzky M, Machner L, Weininger U, Feller SM, Balbach J. Macromolecular crowding induces a binding competent transient structure in intrinsically disordered Gab1. J Mol Biol 2021; 434:167407. [PMID: 34929201 DOI: 10.1016/j.jmb.2021.167407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613-694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1613-694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation.
Collapse
Affiliation(s)
- Tobias Gruber
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Marc Lewitzky
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Lisa Machner
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany.
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Technical Biochemistry e.V. and Center for Structure and Dynamics of Proteins, Martin-Luther-University of Halle-Wittenberg, Germany.
| |
Collapse
|
28
|
Kawale AA, Burmann BM. Characterization of backbone dynamics using solution NMR spectroscopy to discern the functional plasticity of structurally analogous proteins. STAR Protoc 2021; 2:100919. [PMID: 34761231 PMCID: PMC8567434 DOI: 10.1016/j.xpro.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The comprehensive delineation of inherent dynamic motions embedded in proteins, which can be crucial for their functional repertoire, is often essential yet remains poorly understood in the majority of cases. In this protocol, we outline detailed descriptions of the necessary steps for employing solution NMR spectroscopy for the in-depth amino acid level understanding of backbone dynamics of proteins. We describe the application of the protocol on the structurally analogous Tudor domains with disparate functionalities as a model system. For complete details on the use and execution of this protocol, please refer to Kawale and Burmann (2021).
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
29
|
Nguyen KDQ, Vigers M, Sefah E, Seppälä S, Hoover JP, Schonenbach NS, Mertz B, O'Malley MA, Han S. Homo-oligomerization of the human adenosine A 2A receptor is driven by the intrinsically disordered C-terminus. eLife 2021; 10:e66662. [PMID: 34269678 PMCID: PMC8328514 DOI: 10.7554/elife.66662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have long been shown to exist as oligomers with functional properties distinct from those of the monomeric counterparts, but the driving factors of oligomerization remain relatively unexplored. Herein, we focus on the human adenosine A2A receptor (A2AR), a model GPCR that forms oligomers both in vitro and in vivo. Combining experimental and computational approaches, we discover that the intrinsically disordered C-terminus of A2AR drives receptor homo-oligomerization. The formation of A2AR oligomers declines progressively with the shortening of the C-terminus. Multiple interaction types are responsible for A2AR oligomerization, including disulfide linkages, hydrogen bonds, electrostatic interactions, and hydrophobic interactions. These interactions are enhanced by depletion interactions, giving rise to a tunable network of bonds that allow A2AR oligomers to adopt multiple interfaces. This study uncovers the disordered C-terminus as a prominent driving factor for the oligomerization of a GPCR, offering important insight into the effect of C-terminus modification on receptor oligomerization of A2AR and other GPCRs reconstituted in vitro for biophysical studies.
Collapse
Affiliation(s)
- Khanh Dinh Quoc Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Michael Vigers
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Eric Sefah
- C. Eugene Bennett Department of Chemistry, West Virginia UniversityMorgantownUnited States
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jennifer Paige Hoover
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Nicole Star Schonenbach
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia UniversityMorgantownUnited States
| | - Michelle Ann O'Malley
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
30
|
Lambrughi M, Maiani E, Aykac Fas B, Shaw GS, Kragelund BB, Lindorff-Larsen K, Teilum K, Invernizzi G, Papaleo E. Ubiquitin Interacting Motifs: Duality Between Structured and Disordered Motifs. Front Mol Biosci 2021; 8:676235. [PMID: 34262938 PMCID: PMC8273247 DOI: 10.3389/fmolb.2021.676235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 01/11/2023] Open
Abstract
Ubiquitin is a small protein at the heart of many cellular processes, and several different protein domains are known to recognize and bind ubiquitin. A common motif for interaction with ubiquitin is the Ubiquitin Interacting Motif (UIM), characterized by a conserved sequence signature and often found in multi-domain proteins. Multi-domain proteins with intrinsically disordered regions mediate interactions with multiple partners, orchestrating diverse pathways. Short linear motifs for binding are often embedded in these disordered regions and play crucial roles in modulating protein function. In this work, we investigated the structural propensities of UIMs using molecular dynamics simulations and NMR chemical shifts. Despite the structural portrait depicted by X-crystallography of stable helical structures, we show that UIMs feature both helical and intrinsically disordered conformations. Our results shed light on a new class of disordered UIMs. This group is here exemplified by the C-terminal domain of one isoform of ataxin-3 and a group of ubiquitin-specific proteases. Intriguingly, UIMs not only bind ubiquitin. They can be a recruitment point for other interactors, such as parkin and the heat shock protein Hsc70-4. Disordered UIMs can provide versatility and new functions to the client proteins, opening new directions for research on their interactome.
Collapse
Affiliation(s)
- Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Emiliano Maiani
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Burcu Aykac Fas
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gaetano Invernizzi
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
31
|
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19:3817-3828. [PMID: 34285781 PMCID: PMC8273358 DOI: 10.1016/j.csbj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Intrinsically Disordered Proteins and Regions (IDPs/IDRs) are key components of a multitude of biological processes. Conformational malleability enables IDPs/IDRs to perform very specialized functions that cannot be accomplished by globular proteins. The functional role for most of these proteins is related to the recognition of other biomolecules to regulate biological processes or as a part of signaling pathways. Depending on the extent of disorder, the number of interacting sites and the type of partner, very different architectures for the resulting assemblies are possible. More recently, molecular condensates with liquid-like properties composed of multiple copies of IDPs and nucleic acids have been proven to regulate key processes in eukaryotic cells. The structural and kinetic details of disordered biomolecular complexes are difficult to unveil experimentally due to their inherent conformational heterogeneity. Computational approaches, alone or in combination with experimental data, have emerged as unavoidable tools to understand the functional mechanisms of this elusive type of assemblies. The level of description used, all-atom or coarse-grained, strongly depends on the size of the molecular systems and on the timescale of the investigated mechanism. In this mini-review, we describe the most relevant architectures found for molecular interactions involving IDPs/IDRs and the computational strategies applied for their investigation.
Collapse
Affiliation(s)
- Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
32
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
33
|
Madhurima K, Nandi B, Sekhar A. Metamorphic proteins: the Janus proteins of structural biology. Open Biol 2021; 11:210012. [PMID: 33878950 PMCID: PMC8059507 DOI: 10.1098/rsob.210012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The structural paradigm that the sequence of a protein encodes for a unique three-dimensional native fold does not acknowledge the intrinsic plasticity encapsulated in conformational free energy landscapes. Metamorphic proteins are a recently discovered class of biomolecules that illustrate this plasticity by folding into at least two distinct native state structures of comparable stability in the absence of ligands or cofactors to facilitate fold-switching. The expanding list of metamorphic proteins clearly shows that these proteins are not mere aberrations in protein evolution, but may have actually been a consequence of distinctive patterns in selection pressure such as those found in virus–host co-evolution. In this review, we describe the structure–function relationships observed in well-studied metamorphic protein systems, with specific focus on how functional residues are sequestered or exposed in the two folds of the protein. We also discuss the implications of metamorphosis for protein evolution and the efforts that are underway to predict metamorphic systems from sequence properties alone.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
34
|
Böhm R, Imseng S, Jakob RP, Hall MN, Maier T, Hiller S. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Mol Cell 2021; 81:2403-2416.e5. [PMID: 33852892 DOI: 10.1016/j.molcel.2021.03.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.
Collapse
Affiliation(s)
- Raphael Böhm
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Stefan Imseng
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | | |
Collapse
|
35
|
Sagar A, Herranz-Trillo F, Langkilde AE, Vestergaard B, Bernadó P. Structure and thermodynamics of transient protein-protein complexes by chemometric decomposition of SAXS datasets. Structure 2021; 29:1074-1090.e4. [PMID: 33862013 DOI: 10.1016/j.str.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Transient biomolecular interactions play crucial roles in many cellular signaling and regulation processes. However, deciphering the structure of these assemblies is challenging owing to the difficulties in isolating complexes from the individual partners. The additive nature of small-angle X-ray scattering (SAXS) data allows for probing the species present in these mixtures, but decomposition into structural and thermodynamic information is difficult. We present a chemometric approach enabling the decomposition of titration SAXS data into species-specific information. Using extensive synthetic SAXS data, we demonstrate that robust decomposition can be achieved for titrations with a maximum fraction of complex of 0.5 that can be extended to 0.3 when two orthogonal titrations are simultaneously analyzed. The effect of the structural features, titration points, relative concentrations, and noise are thoroughly analyzed. The validation of the strategy with experimental data highlights the power of the approach to provide unique insights into this family of biomolecular assemblies.
Collapse
Affiliation(s)
- Amin Sagar
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| | - Fátima Herranz-Trillo
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
36
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
37
|
Virtanen SI, Kiirikki AM, Mikula KM, Iwaï H, Ollila OHS. Heterogeneous dynamics in partially disordered proteins. Phys Chem Chem Phys 2021; 22:21185-21196. [PMID: 32929427 DOI: 10.1039/d0cp03473h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance of disordered protein regions is increasingly recognized in biology, but their characterization remains challenging due to the lack of suitable experimental and theoretical methods. NMR experiments can detect multiple timescale dynamics and structural details of disordered protein regions, but their detailed interpretation is often difficult. Here we combine protein backbone 15N spin relaxation data with molecular dynamics (MD) simulations to detect not only heterogeneous dynamics of large partially disordered proteins but also their conformational ensembles. We observed that the rotational dynamics of folded regions in partially disordered proteins is dominated by similar rigid body rotation as in globular proteins, thereby being largely independent of flexible disordered linkers. Disordered regions, on the other hand, exhibit complex rotational motions with multiple timescales below ∼30 ns which are difficult to detect from experimental data alone, but can be captured by MD simulations. Combining MD simulations and backbone 15N spin relaxation data, measured applying segmental isotopic labeling with salt-inducible split intein, we resolved the conformational ensemble and dynamics of partially disordered periplasmic domain of TonB protein from Helicobacter pylori containing 250 residues. To demonstrate the universality of our approach, it was applied also to the partially disordered region of chicken Engrailed 2. Our results pave the way in understanding how TonB transfers energy from inner membrane to the outer membrane receptors in Gram-negative bacteria, as well as the function of other proteins with disordered domains.
Collapse
Affiliation(s)
- Salla I Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Anne M Kiirikki
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Kornelia M Mikula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
38
|
Delhommel F, Sattler M. When Less Is More: Combining Site-Specific Isotope Labeling and NMR Unravels Structural Details of Huntingtin Repeats. Structure 2020; 28:730-732. [PMID: 32640252 DOI: 10.1016/j.str.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Structure, Urbanek et al. (2020a) combine site-specific isotope labeling and NMR spectroscopy to investigate opposing effects of flanking regions onto the conformation of the poly-Q region in Huntingtin. Poly-Q interactions with preceding residues promote an α-helical conformation while a following proline-rich region favors extended conformations.
Collapse
Affiliation(s)
- Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.
| |
Collapse
|
39
|
Higo J, Kawabata T, Kusaka A, Kasahara K, Kamiya N, Fukuda I, Mori K, Hata Y, Fukunishi Y, Nakamura H. Molecular Interaction Mechanism of a 14-3-3 Protein with a Phosphorylated Peptide Elucidated by Enhanced Conformational Sampling. J Chem Inf Model 2020; 60:4867-4880. [PMID: 32910853 DOI: 10.1021/acs.jcim.0c00551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enhanced conformational sampling, a genetic-algorithm-guided multidimensional virtual-system coupled molecular dynamics, can provide equilibrated conformational distributions of a receptor protein and a flexible ligand at room temperature. The distributions provide not only the most stable but also semistable complex structures and propose a ligand-receptor binding process. This method was applied to a system consisting of a receptor protein, 14-3-3ε, and a flexible peptide, phosphorylated myeloid leukemia factor 1 (pMLF1). The results present comprehensive binding pathways of pMLF1 to 14-3-3ε. We identified four thermodynamically stable clusters of MLF1 on the 14-3-3ε surface and free-energy barriers among some clusters. The most stable cluster includes two high-density spots connected by a narrow corridor. When pMLF1 passes the corridor, a salt-bridge relay (switching) related to the phosphorylated residue of pMLF1 occurs. Conformations in one high-density spot are similar to the experimentally determined complex structure. Three-dimensional distributions of residues in the intermolecular interface rationally explain the binding constant changes resulting from the alanine mutation experiment for the residues. We also performed a simulation of nonphosphorylated peptide and 14-3-3ε, which demonstrated that the complex structure was unstable, suggesting that phosphorylation of the peptide is crucially important for binding to 14-3-3ε.
Collapse
Affiliation(s)
- Junichi Higo
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takeshi Kawabata
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ayumi Kusaka
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ikuo Fukuda
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kentaro Mori
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Maizuru College, 234 Shiroya, Maizuru, Kyoto 625-8511 Japan
| | - Yutaka Hata
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshifumi Fukunishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Predicting Secondary Structure Propensities in IDPs Using Simple Statistics from Three-Residue Fragments. J Mol Biol 2020; 432:5447-5459. [DOI: 10.1016/j.jmb.2020.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
|
41
|
Sokolik CG, Qassem N, Chill JH. The Disordered Cellular Multi-Tasker WIP and Its Protein-Protein Interactions: A Structural View. Biomolecules 2020; 10:biom10071084. [PMID: 32708183 PMCID: PMC7407642 DOI: 10.3390/biom10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023] Open
Abstract
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein-protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP's protein-protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent.
Collapse
|
42
|
Zeng X, Holehouse AS, Chilkoti A, Mittag T, Pappu RV. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins. Biophys J 2020; 119:402-418. [PMID: 32619404 PMCID: PMC7376131 DOI: 10.1016/j.bpj.2020.06.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Phase separation is thought to underlie spatial and temporal organization that is required for controlling biochemical reactions in cells. Multivalence of interaction motifs, also known as stickers, is a defining feature of proteins that drive phase separation. Intrinsically disordered proteins with stickers uniformly distributed along the linear sequence can serve as scaffold molecules that drive phase separation. The sequence-intrinsic contributions of disordered proteins to phase separation can be discerned by computing or measuring sequence-specific phase diagrams. These help to delineate the combinations of protein concentration and a suitable control parameter, such as temperature, that support phase separation. Here, we present an approach that combines detailed simulations with a numerical adaptation of an analytical Gaussian cluster theory to enable the calculation of sequence-specific phase diagrams. Our approach leverages the known equivalence between the driving forces for single-chain collapse in dilute solutions and the driving forces for phase separation in concentrated solutions. We demonstrate the application of the theory-aided computations through calculation of phase diagrams for a set of archetypal intrinsically disordered low-complexity domains. We also leverage theories to compute sequence-specific percolation lines and thereby provide a thermodynamic framework for hardening transitions that have been observed for many biomolecular condensates.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri
| | - Alex S Holehouse
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
43
|
Lincoff J, Haghighatlari M, Krzeminski M, Teixeira JMC, Gomes GNW, Gradinaru CC, Forman-Kay JD, Head-Gordon T. Extended Experimental Inferential Structure Determination Method in Determining the Structural Ensembles of Disordered Protein States. Commun Chem 2020; 3:74. [PMID: 32775701 PMCID: PMC7409953 DOI: 10.1038/s42004-020-0323-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Proteins with intrinsic or unfolded state disorder comprise a new frontier in structural biology, requiring the characterization of diverse and dynamic structural ensembles. We introduce a comprehensive Bayesian framework, the Extended Experimental Inferential Structure Determination (X-EISD) method, that calculates the maximum log-likelihood of a disordered protein ensemble. X-EISD accounts for the uncertainties of a range of experimental data and back-calculation models from structures, including NMR chemical shifts, J-couplings, Nuclear Overhauser Effects (NOEs), paramagnetic relaxation enhancements (PREs), residual dipolar couplings (RDCs), hydrodynamic radii (R h ), single molecule fluorescence Förster resonance energy transfer (smFRET) and small angle X-ray scattering (SAXS). We apply X-EISD to the joint optimization against experimental data for the unfolded drkN SH3 domain and find that combining a local data type, such as chemical shifts or J-couplings, paired with long-ranged restraints such as NOEs, PREs or smFRET, yields structural ensembles in good agreement with all other data types if combined with representative IDP conformers.
Collapse
Affiliation(s)
- James Lincoff
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720 USA
- Present Address: Cardiovascular Research Institute, University of California, San Francisco, CA 94158 USA
| | - Mojtaba Haghighatlari
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720 USA
- Department of Chemistry, University of California, Berkeley, CA 94720 USA
| | - Mickael Krzeminski
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4 Canada
| | - João M. C. Teixeira
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4 Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| | - Gregory-Neal W. Gomes
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 Canada
| | - Claudiu C. Gradinaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 Canada
| | - Julie D. Forman-Kay
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4 Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| | - Teresa Head-Gordon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, CA 94720 USA
- Department of Chemistry, University of California, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
44
|
Depletion interactions modulate the binding between disordered proteins in crowded environments. Proc Natl Acad Sci U S A 2020; 117:13480-13489. [PMID: 32487732 PMCID: PMC7306994 DOI: 10.1073/pnas.1921617117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular environment in a biological cell is much more crowded than the conditions commonly used in biochemical and biophysical experiments in vitro. It is therefore important to understand how the conformations and interactions of biological macromolecules are affected by such crowding. Addressing these questions quantitatively, however, has been challenging owing to a lack of sufficiently detailed experimental information and theoretical concepts suitable for describing crowding, especially when polymeric crowding agents and biomolecules are involved. Here, we use the combination of extensive single-molecule experiments with established and recent theoretical concepts to investigate the interaction between two intrinsically disordered proteins. We observe pronounced effects of crowding on their interactions and provide a quantitative framework for rationalizing these effects. Intrinsically disordered proteins (IDPs) abound in cellular regulation. Their interactions are often transitory and highly sensitive to salt concentration and posttranslational modifications. However, little is known about the effect of macromolecular crowding on the interactions of IDPs with their cellular targets. Here, we investigate the influence of crowding on the interaction between two IDPs that fold upon binding, with polyethylene glycol as a crowding agent. Single-molecule spectroscopy allows us to quantify the effects of crowding on a comprehensive set of observables simultaneously: the equilibrium stability of the complex, the association and dissociation kinetics, and the microviscosity, which governs translational diffusion. We show that a quantitative and coherent explanation of all observables is possible within the framework of depletion interactions if the polymeric nature of IDPs and crowders is incorporated based on recent theoretical developments. The resulting integrated framework can also rationalize important functional consequences, for example, that the interaction between the two IDPs is less enhanced by crowding than expected for folded proteins of the same size.
Collapse
|
45
|
Urbanek A, Popovic M, Morató A, Estaña A, Elena-Real CA, Mier P, Fournet A, Allemand F, Delbecq S, Andrade-Navarro MA, Cortés J, Sibille N, Bernadó P. Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins. Structure 2020; 28:733-746.e5. [PMID: 32402249 DOI: 10.1016/j.str.2020.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
The causative agent of Huntington's disease, the poly-Q homo-repeat in the N-terminal region of huntingtin (httex1), is flanked by a 17-residue-long fragment (N17) and a proline-rich region (PRR), which promote and inhibit the aggregation propensity of the protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from site-specifically labeled NMR samples, we derived an ensemble model of httex1 that identified both flanking regions as opposing poly-Q secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond network involving the side chains of the first glutamines in the poly-Q tract, the PRR promotes extended conformations in neighboring glutamines. Furthermore, a bioinformatics analysis of the human proteome showed that these structural traits are present in many human glutamine-rich proteins and that they are more prevalent in proteins with longer poly-Q tracts. Taken together, these observations provide the structural bases to understand previous biophysical and functional data on httex1.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
46
|
Abstract
Many biomolecular condensates appear to form via spontaneous or driven processes that have the hallmarks of intracellular phase transitions. This suggests that a common underlying physical framework might govern the formation of functionally and compositionally unrelated biomolecular condensates. In this review, we summarize recent work that leverages a stickers-and-spacers framework adapted from the field of associative polymers for understanding how multivalent protein and RNA molecules drive phase transitions that give rise to biomolecular condensates. We discuss how the valence of stickers impacts the driving forces for condensate formation and elaborate on how stickers can be distinguished from spacers in different contexts. We touch on the impact of sticker- and spacer-mediated interactions on the rheological properties of condensates and show how the model can be mapped to known drivers of different types of biomolecular condensates.
Collapse
Affiliation(s)
- Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Natural Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
47
|
Siemer AB. Advances in studying protein disorder with solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 106:101643. [PMID: 31972419 PMCID: PMC7202078 DOI: 10.1016/j.ssnmr.2020.101643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/26/2023]
Abstract
Solution NMR is a key tool to study intrinsically disordered proteins (IDPs), whose importance for biological function is widely accepted. However, disordered proteins are not limited to solution and are also found in non-soluble systems such as fibrils and membrane proteins. In this Trends article, I will discuss how solid-state NMR can be used to study disorder in non-soluble proteins. Techniques based on dipolar couplings can study static protein disorder which either occurs naturally as e.g. in spider silk or can be induced by freeze trapping IDPs or unfolded proteins. In this case, structural ensembles are directly reflected by a static distribution of dihedral angels that can be determined by the distribution of chemical shifts or other methods. Techniques based on J-couplings can detect dynamic protein disorder under MAS. In this case, only average chemical shifts are measured but disorder can be characterized with a variety of data including secondary chemical shifts, relaxation rates, paramagnetic relaxation enhancements, or residual dipolar couplings. I describe both technical aspects and examples of solid-state NMR on protein disorder and end the article with a discussion of challenges and opportunities of this emerging field.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Univeristy of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
48
|
Huang NF, Chaudhuri O, Cahan P, Wang A, Engler AJ, Wang Y, Kumar S, Khademhosseini A, Li S. Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioeng 2020; 4:010906. [PMID: 32161833 PMCID: PMC7054123 DOI: 10.1063/1.5129788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Recent technological advances in cellular and molecular engineering have provided new
insights into biology and enabled the design, manufacturing, and manipulation of complex
living systems. Here, we summarize the state of advances at the molecular, cellular, and
multi-cellular levels using experimental and computational tools. The areas of focus
include intrinsically disordered proteins, synthetic proteins, spatiotemporally dynamic
extracellular matrices, organ-on-a-chip approaches, and computational modeling, which all
have tremendous potential for advancing fundamental and translational science.
Perspectives on the current limitations and future directions are also described, with the
goal of stimulating interest to overcome these hurdles using multi-disciplinary
approaches.
Collapse
Affiliation(s)
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Adam J Engler
- Department of Bioengineering, Jacob School of Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Department of Bioengineering, Jacob School of Engineering, University of California San Diego, La Jolla, California 92093, USA
| | | | | | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
49
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
50
|
Abstract
Functions of intrinsically disordered proteins do not require structure. Such structure-independent functionality has melted away the classic rigid "lock and key" representation of structure-function relationships in proteins, opening a new page in protein science, where molten keys operate on melted locks and where conformational flexibility and intrinsic disorder, structural plasticity and extreme malleability, multifunctionality and binding promiscuity represent a new-fangled reality. Analysis and understanding of this new reality require novel tools, and some of the techniques elaborated for the examination of intrinsically disordered protein functions are outlined in this review.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|