1
|
Mudgil M, Kurur ND. Extracting Scalar Couplings From Complex 1H NMR Spectra Using a Simple 2D J-Resolved Sequence. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:841-849. [PMID: 39294923 DOI: 10.1002/mrc.5480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024]
Abstract
Measurement of scalar couplings between protons is a very challenging task because of complex multiplet patterns and severe overlapping of these multiplets in congested 1D spectra. Numerous 2D J-resolved sequences now exist that utilize either the Zangger-Sterk or PSYCHE or z-filter elements along with selective refocusing and pure-shift schemes to generate high-resolution phase-sensitive spectra with simple doublets inF 1 $$ {F}_1 $$ dimension. Herein, we present a 2D J-resolved sequence that employs a simple element consisting of hard pulses and inter-pulse delays to generate phase-sensitive spectra. This simple element in combination with selective refocusing eliminates all the undesired components including the intense axial peaks, thus provides clean 2D J-resolved spectra with signals of only two targeted protons with simple doublets inF 1 $$ {F}_1 $$ dimension and full multiplets of target protons inF 2 $$ {F}_2 $$ dimension. This high selectivity thus obviates the need for extra filtering elements and pure-shift acquisition schemes that are integrated into existing sequences to facilitate coupling measurements in overcrowded signals. It is therefore anticipated that this sequence, with the ease of implementation and ability to extract coupling values from highly congested spectra, should turn out an important tool for structural and conformational analyses in chemical and biological studies.
Collapse
Affiliation(s)
- Manjeet Mudgil
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Narayanan D Kurur
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Cantrelle FX, Boll E, Sinnaeve D. Making 1H- 1H Couplings More Accessible and Accurate with Selective 2DJ NMR Experiments Aided by 13C Satellites. Anal Chem 2024; 96:7056-7064. [PMID: 38666447 DOI: 10.1021/acs.analchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
1H-1H coupling constants are one of the primary sources of information for nuclear magnetic resonance (NMR) structural analysis. Several selective 2DJ experiments have been proposed that allow for their individual measurement at pure shift resolution. However, all of these experiments fail in the not uncommon case when coupled protons have very close chemical shifts. First, the coupling between protons with overlapping multiplets is inaccessible due to the inability of a frequency-selective pulse to invert just one of them. Second, the strong coupling condition affects the accuracy of coupling measurements involving third spins. These shortcomings impose a limit on the effectiveness of state-of-the-art experiments, such as G-SERF or PSYCHEDELIC. Here, we introduce two new and complementary selective 2DJ experiments that we coin SERFBIRD and SATASERF. These experiments overcome the aforementioned issues by utilizing the 13C satellite signals at natural isotope abundance, which resolves the chemical shift degeneracy. We demonstrate the utility of these experiments on the tetrasaccharide stachyose and the challenging case of norcamphor, for the latter achieving measurement of all JHH couplings, while only a few were accessible with PSYCHEDELIC. The new experiments are applicable to any organic compound and will prove valuable for configurational and conformational analyses.
Collapse
Affiliation(s)
- François-Xavier Cantrelle
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Emmanuelle Boll
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Davy Sinnaeve
- CNRS EMR 9002 ─ Integrative Structural Biology, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille UMR 1167 ─ RID-AGE ─ Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
3
|
Zhan H, Gao C, Huang C, Lin X, Huang Y, Chen Z. Efficient determination of scalar coupling networks by band selective decoupled 2D NMR spectroscopy. Anal Chim Acta 2023; 1277:341682. [PMID: 37604618 DOI: 10.1016/j.aca.2023.341682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Scalar (J) couplings constitute one of vital features observed in NMR spectroscopy and show valuable information for molecular structure elucidation and conformation analysis. However, existing J coupling measurement techniques are generally confined by the concerns of resolution, SNR, and experimental efficiency. Herein, we exploit an efficient 2D NMR protocol to deal with the above concerns by enabling rapid, sensitive, and high-resolution J coupling extraction. This protocol delivers full-resolved pure shift 2D absorption-mode spectroscopy to gain great convenience for efficient coupling measurements on overcrowded NMR signals. Resulting from band selective signal evolution, this protocol ensures high signal intensity with full magnetization preservation to meet the demand on probing low-concentration samples. This protocol focuses on accessing coupling information between specific two coupled spin families, and it is not applicable to all possible spin systems. Besides, it adopts echo-train selective refocusing acquisition to accelerate pure shift 2D J-edited implementations into pseudo-2D acquisition, and thus holding the experimental efficiency similar to conventional SERF experiments. Therefore, this study presents a promising tool for efficient extraction of J coupling networks, and takes an important step for coupling measurement techniques with wide applications on molecular conformation elucidation and stereochemical configuration analysis.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Biomedical Engineering, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cunyuan Gao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Simultaneous determination of multiple coupling networks by high-resolution 2D J-edited NMR spectroscopy. Anal Chim Acta 2021; 1185:339055. [PMID: 34711310 DOI: 10.1016/j.aca.2021.339055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
J coupling constitutes an important NMR parameter for molecular-level composition analysis and conformation elucidation. Dozens of J-based approaches have been exploited for J coupling measurement and coupling network determination, however, they are generally imposed to insufficient spectral resolution to resolve crowded NMR resonances and low measurement efficiency that a single experiment records one J coupling network. Herein, we propose a general NMR method to collect high-resolution 2D J-edited NMR spectra, which are characterized with advantages of pure absorptive lineshapes, decoupled chemical shift dimension, as well as eliminated axial peaks, thus facilitating J coupling partner assignments and J coupling constant measurements. More meaningfully, this protocol allows simultaneous determination of multiple coupling networks for highly efficient multiplet analyses via addressing multiple protons within one single experiment. Additionally, another variant is proposed for high-resolution applications under adverse magnetic field conditions. Therefore, this study provides a useful NMR protocol for configurational and structural studies with extensive applications in chemistry, biology, and material science.
Collapse
|
5
|
Jeannerat D, Cobas C. Application of multiplet structure deconvolution to extract scalar coupling constants from 1D nuclear magnetic resonance spectra. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:545-555. [PMID: 37905213 PMCID: PMC10539725 DOI: 10.5194/mr-2-545-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 11/01/2023]
Abstract
Multiplet structure deconvolution provides a robust method to determine the values of the coupling constants in first-order 1D nuclear magnetic resonance (NMR) spectra. Functions simplifying the coupling structure for partners with spin larger than 1 / 2 and for doublets with unequal amplitudes were introduced. The chemical shifts of the coupling partners causing mild second-order effects can, in favourable cases, be calculated from the slopes measured in doublet structures. Illustrations demonstrate that deconvolution can straightforwardly analyse multiplet posing difficulties to humans and, in some cases, extract coupling constants from unresolved multiplets.
Collapse
Affiliation(s)
- Damien Jeannerat
- NMRprocess.ch, Geneva, 1200, Switzerland
- Mestrelab Research S.L. Santiago de Compostela, A Coruña, 15706, Spain
| | - Carlos Cobas
- Mestrelab Research S.L. Santiago de Compostela, A Coruña, 15706, Spain
| |
Collapse
|
6
|
Dong X, Zeng Q, Zhan C, Chen J, Yang C, Chen Z, Lin Y. A simple data post-processing method for axial peaks free 2D PSYCHEDELIC NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 325:106938. [PMID: 33636634 DOI: 10.1016/j.jmr.2021.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Homonuclear scalar coupling plays an important role in the elucidation of molecular structure and dynamics. However, complex multiplets due to 1H-1H scalar coupling splittings complicate the assignment of peaks in overcrowded spectral regions. Although many methods focusing on disentangling couplings have been proposed in recent years, some defects like intense axial peaks and dispersive components still exist. Herein, a simple data post-processing method based on the interleaved acquisition mode PSYCHEDELIC (Pure Shift Yielded by CHirp Excitation to DELiver Individual Couplings) is designed to acquire absorption-mode 2D J spectrum while eradicating axial peaks. This approach provides a high resolution and pure absorptive spectrum, permitting unambiguous and accurate measurement of scalar coupling constants involving a given proton.
Collapse
Affiliation(s)
- Xi Dong
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chaoqun Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jinyong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chuang Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China.
| |
Collapse
|
7
|
Zeng Q, Chen J, Zhan C, Lin Y, Chen Z. Fully Exploiting the Power of 2D NMR J-Resolved Spectroscopy. Anal Chem 2020; 92:6893-6899. [PMID: 32338887 DOI: 10.1021/acs.analchem.9b05441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool that enables one to study molecular properties and interactions. Homonuclear couplings provide valuable structural information but are often difficult to disentangle in crowded 1H NMR spectra where complex multiplets and signal overlap commonly exist. Multidimensional NMR experiments push the power of NMR to a new level by providing better signal dispersion. Among them, 2D J-resolved spectroscopy is widely used for multiplet analysis and the measurement of scalar coupling constants. Here, we present a new 2D J-resolved method, CASCADE, through which easier multiplet analysis and unambiguous measurement of specific coupling constants can be achieved at the same time, fully exploiting the power of 2D J-resolved spectroscopy. It is expected that this method may replace a conventional 2D J experiment in many cases, facilitating structural and configurational studies as well as chemical and biological analyses.
Collapse
Affiliation(s)
- Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
| | - Jinyong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
| | - Chaoqun Zhan
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
8
|
Zeng Q, Chen J, Lin Y, Chen Z. Boosting resolution in NMR spectroscopy by chemical shift upscaling. Anal Chim Acta 2020; 1110:109-114. [PMID: 32278384 DOI: 10.1016/j.aca.2020.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Resolution is an essential challenge in NMR spectroscopy. Narrow chemical shift range and extensive signal splittings due to scalar couplings often give rise to spectral congestion and even overlap in NMR spectra. Magnetic field strength is directly responsible for spectral resolution as higher magnetic field strength offers better signal dispersion. However, the process of further increasing magnetic field strength of NMR instruments is slow and expensive. Methodology aimed at resolution issue has long been developing. Here, we present a chemical shift upscaling method, in which chemical shifts are upscaled by a given factor while scalar couplings are unchanged. As a result, signal dispersion and hence the resolution are improved. Therefore, it is possible to separate multiplets which originally overlap with each other and to extract their integrals for quantitative analysis. Improved signal dispersion and the preservation of scalar couplings also facilitate multiplet analysis and signal assignment. Chemical shift upscaling offers a method for enhancing resolution limited by magnetic field strength.
Collapse
Affiliation(s)
- Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jinyong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Lesot P, Aroulanda C, Berdagué P, Meddour A, Merlet D, Farjon J, Giraud N, Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:85-154. [PMID: 32130960 DOI: 10.1016/j.pnmrs.2019.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy of oriented samples makes accessible residual anisotropic intramolecular NMR interactions, such as chemical shift anisotropy (RCSA), dipolar coupling (RDC), and quadrupolar coupling (RQC), while preserving high spectral resolution. In addition, in a chiral aligned environment, enantiomers of chiral molecules or enantiopic elements of prochiral compounds adopt different average orientations on the NMR timescale, and hence produce distinct NMR spectra or signals. NMR spectroscopy in chiral aligned media is a powerful analytical tool, and notably provides unique information on (pro)chirality analysis, natural isotopic fractionation, stereochemistry, as well as molecular conformation and configuration. Significant progress has been made in this area over the three last decades, particularly using polypeptide-based chiral liquid crystals (CLCs) made of organic solutions of helically chiral polymers (as PBLG) in organic solvents. This review presents an overview of NMR in polymeric LCs. In particular, we describe the theoretical tools and the major NMR methods that have been developed and applied to study (pro)chiral molecules dissolved in such oriented solvents. We also discuss the representative applications illustrating the analytical potential of this original NMR tool. This overview article is dedicated to thirty years of original contributions to the development of NMR spectroscopy in polypeptide-based chiral liquid crystals.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France; Centre National de la Recherche Scientifique (CNRS), France.
| | - Christie Aroulanda
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Philippe Berdagué
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Denis Merlet
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Jonathan Farjon
- Centre National de la Recherche Scientifique (CNRS), France; Faculté des Sciences et Techniques de Nantes, UMR CNRS 6230, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, CEISAM, Equipe EBSI, BP 92208, 2 rue de la Houssinière, F-44322 Nantes cedex 3, France
| | - Nicolas Giraud
- Université Paris Descartes, Sorbonne Paris Cité, UMR CNRS 8601, Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, LPTCB, 45 rue des Saints Pères, F-75006 Paris, France
| | - Olivier Lafon
- Universite de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR CNRS 8181, Unité de Catalyse et Chimie du Solide, UCCS, F-59000 Lille, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
10
|
Singh U, Bhattacharya S, Baishya B. Pure shift HMQC: Resolution and sensitivity enhancement by bilinear rotation decoupling in the indirect and direct dimensions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106684. [PMID: 31931343 DOI: 10.1016/j.jmr.2020.106684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The heteronuclear multiple-quantum coherence in the indirect dimension of the two-dimensional HMQC experiment evolves under the passive 1H-1H J-couplings leading to multiplet structures in the F1 dimension. Besides, 1H-1H J-multiplets appear in the direct dimension as well. Thus, multiplets along both dimensions lower the resolution and sensitivity of this technique, when high resolution is required along both dimensions. An efficient broadband homodecoupling scheme along the F1 dimension of the HMQC experiment has not been realized to date. We have implemented broadband homonuclear decoupling using bilinear rotation decoupling (BIRD) by adding a 1H SQ evolution period followed by BIRD before the 1H-13C multiple-quantum evolution period in the HMQC. In the direct time domain, BIRD is implemented using a real-time or single-scan scheme, which further improves resolution and sensitivity of this technique. The resulting pure shift HMQC provides singlet peak per chemical site along F1 as well as F2 axes and, hence, better resolution and sensitivity than conventional HMQC spectrum for all peaks except diastereotopic methylene protons. Due to the incorporation of the BIRD, the indirect time domain becomes double in length compared to the conventional HMQC. However, slow relaxation of small molecules favors better sensitivity for ps-HMQC relative to conventional HMQC under all conditions. We also found that the sensitivity of ps-HMQC is only slightly less than ps-HSQC for small molecules.
Collapse
Affiliation(s)
- Upendra Singh
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India; Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subrato Bhattacharya
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bikash Baishya
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
11
|
Zhan C, Zeng Q, Chen J, Lin Y, Chen Z. PE-SERF: A sensitivity-improved experiment to measure J HH in crowded spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106590. [PMID: 31513964 DOI: 10.1016/j.jmr.2019.106590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Aiming at facilitating the analysis of molecular structure, the gradient-encoded selective refocusing methods (G-SERF) and a great number of its variants for measuring proton-proton coupling constants have been proposed. However, the sensitivity is an issue in the 2D gradient-encoded experiments, because the signal intensity is determined by the slice thickness of the sample that depends on encoding gradient and the bandwidth of selective pulses which is limited by the smallest chemical shift difference of any two coupled protons. Here, we present a method dubbed PE-SERF (perfect echo selective refocusing) which can determine all JHH values involving a selected proton with improved sensitivity compared to original G-SERF experiment. The modules of perfect echo involving selective pulses and gradient-encoded selective refocusing are combined in the method, so that the unwanted J couplings arising from coupled spin pairs in the same sample slice would be nullified. In this way, instead of single proton, a pair of coupled protons is allowed to share a sample slice, and thus the slice thickness can be increased and the spectral sensitivity can be improved. The performance of the method is demonstrated by experiments on quinine and strychnine.
Collapse
Affiliation(s)
- Chaoqun Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jinyong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Zeng Q, Lin Y, Chen Z. Pushing resolution limits for extracting 1H- 1H scalar coupling constants by a resolution-enhanced selective refocusing method. J Chem Phys 2019; 150:184202. [PMID: 31091887 DOI: 10.1063/1.5089930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables one to study molecular structure and dynamics in a noninvasive manner and has long served as a versatile and indispensable analytical tool in physics, chemistry, and biology. Scalar coupling, an essential feature in NMR spectroscopy, provides rich information regarding molecular structure and conformation. The measurement of scalar coupling constants, therefore, constitutes an important issue in NMR spectroscopy. Homonuclear 2D J-resolved spectroscopy is a powerful tool for multiplet analysis and coupling measurement. Recently, a number of phase-sensitive J-resolved methods and selective measuring methods have been developed to facilitate the extraction of coupling constants. However, resolution remains a crucial challenge when extracting small coupling constants or under inhomogeneous fields. In this paper, we present a resolution-enhanced selective refocusing (RESERF) method for the extraction of coupling constants. The effect of magnetic field inhomogeneity can be eliminated, resulting in very narrow linewidths. Therefore, samples with small coupling constants or under inhomogeneous fields can be well analyzed. The RESERF method may be of great value for structural and conformational studies in chemistry and biology.
Collapse
Affiliation(s)
- Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|