1
|
Li Z, Li Z, Lv X, Li Z, Xiong L, Hu X, Qin D. Intracerebroventricular Administration of Interferon-Alpha Induced Depressive-Like Behaviors and Neurotransmitter Changes in Rhesus Monkeys. Front Neurosci 2020; 14:585604. [PMID: 33328856 PMCID: PMC7710898 DOI: 10.3389/fnins.2020.585604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Interferon-alpha (IFN-α) is a cytokine widely used in the treatment of brain cancers and virus infections with side effects including causing depression. Monoamine neurotransmitter systems have been found playing important roles in peripheral IFN-α-induced depression, but how peripheral IFN-α accesses the central nervous system and contributes to the development of depression is poorly known. This study aimed to develop a non-human primate model using long-term intracerebroventricular (i.c.v.) administration of IFN-α (5 days/week for 6 weeks), to observe the induced depressive-like behaviors and to explore the contributions of monoamine neurotransmitter systems in the development of depression. In monkeys receiving i.c.v. IFN-α administration, anhedonia was observed as decreases of sucrose consumption, along with depressive-like symptoms including increased huddling behavior, decreases of spontaneous and reactive locomotion in home cage, as well as reduced exploration and increased motionless in the open field. Chronic central IFN-α infusion significantly increased the cerebrospinal fluid (CSF) concentrations of noradrenaline (NA), and 3,4-dihydroxyphenylacetic acid (DOPAC), but not 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA). These CSF monoamine metabolites showed associations with some specific depression-related behaviors. In conclusion, central IFN-α administration induced anhedonia and depression-related behaviors comparable to the results with peripheral administration, and the development of depression was associated with the dysfunction of monoamine neurotransmitters.
Collapse
Affiliation(s)
- Zhifei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhaoxia Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoman Lv
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dongdong Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Gulinello M, Putterman C. The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:207504. [PMID: 21331367 PMCID: PMC3038428 DOI: 10.1155/2011/207504] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/28/2010] [Indexed: 12/20/2022] Open
Abstract
To date, CNS disease and neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. In this review, we focus on a specific mouse model of lupus and the ways in which this model reflects some of the most common manifestations and potential mechanisms of human NP-SLE. The mouse MRL lymphoproliferation strain (a.k.a. MRL/lpr) spontaneously develops the hallmark serological markers and peripheral pathologies typifying lupus in addition to displaying the cognitive and affective dysfunction characteristic of NP-SLE, which may be among the earliest symptoms of lupus. We suggest that although NP-SLE may share common mechanisms with peripheral organ pathology in lupus, especially in the latter stages of the disease, the immunologically privileged nature of the CNS indicates that early manifestations of particularly mood disorders maybe derived from some unique mechanisms. These include altered cytokine profiles that can activate astrocytes, microglia, and alter neuronal function before dysregulation of the blood-brain barrier and development of clinical autoantibody titres.
Collapse
Affiliation(s)
- Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Pkwy S Kennedy 925, Bronx, NY 10461, USA.
| | | |
Collapse
|
3
|
Depressive Mood Changes and Psychiatric Symptoms During 12-month Low-dose Interferon-α Treatment in Patients With Malignant Melanoma. J Immunother 2010; 33:106-14. [DOI: 10.1097/cji.0b013e3181b8bdb9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Fekkes D, Van Gool AR, Bannink M, Sleijfer S, Kruit WHJ, van der Holt B, Eggermont AMM, Hengeveld MW, Stoter G. Nitric oxide production and monoamine oxidase activity in cancer patients during interferon-alpha therapy. Amino Acids 2008; 37:703-8. [PMID: 18953681 PMCID: PMC2753771 DOI: 10.1007/s00726-008-0191-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/05/2008] [Indexed: 11/30/2022]
Abstract
Both increased and decreased nitric oxide (NO) synthesis have been reported in patients treated with interferon-α (IFN-α). Animal studies showed that IFN-α administration results in increased levels of biogenic amines, subsequent activation of monoamine oxidases (MAOs), and finally in a change in NO production due to the H2O2 generated by MAOs. We examined the potential relationship between NO production in plasma and MAO-B activity in platelets of 43 cancer patients during 8 weeks of treatment with IFN-α. NO synthesis was quantitated by measuring both the ratio of citrulline and arginine (CIT/ARG-ratio) and total nitrite/nitrate (NOx) levels. Compared to baseline, MAO activity and NOx increased, while the CIT/ARG-ratio decreased. No associations were found between NOx, MAO and CIT/ARG-ratio. Only few associations were observed between changes in the biochemical parameters and changes in psychopathology induced by IFN-α, of which the association between changes in CIT and lassitude was the most consistent. The results suggest that peripheral NO production and MAO activity are unrelated to each other, and that peripheral changes in these biochemical parameters induced by IFN-α are unlikely to contribute to definite psychiatric disturbance.
Collapse
Affiliation(s)
- Durk Fekkes
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|