1
|
Ketlyn Lazzarim M, Luiza Paiva Krepel G, Zolet D, Fantin Sardi N, José Polato Gomes H, Jacson Martynhak B. Social buffering reduces fear expression in Wistar rats when tested in pairs, but not when retested alone. Neurobiol Learn Mem 2023:107798. [PMID: 37422207 DOI: 10.1016/j.nlm.2023.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Social buffering is a phenomenon in which the stress response of an individual can be reduced by the presence of another individual. However, little is known about the effect of social buffering on aversive after memory extinction, especially when animals are tested alone afterwards. The aim of this study was to verify the social buffering effect in rats during the extinction session of the contextual fear conditioning model and the fear response when animals are tested alone in the following day. Animals were divided into subjects and associates, with the subjects undergoing the fear conditioning protocol and the associates paired with the subjects during the fear extinction session. Across five different experiments, we tested moderate and high intensity contextual fear conditioning protocols, as well four variations of pairs: (i) two conditioned subjects, (ii) a conditioned subject and a non-conditioned associate, (iii) a conditioned subject and an associate who observed the conditioning of the partner and (iv) two conditioned subjects, with one treated with diazepam. The social buffering effect was found efficient to reduce the fear memory expression during the fear extinction session. In the moderate intensity protocol, the reduction in freezing time occurred only in subjects accompanied by non-conditioned associates and observer associates. In the high intensity protocol, the social buffering effect occurred in subjects accompanied by either conditioned or non-conditioned associates, although the effect was more evident in the presence of non-conditioned subjects. Treatment of the conditioned associates with diazepam did not improve the social buffering effect. Moreover, social buffering effects were not correlated with self-grooming or prosocial behaviors, which indicates that the presence of another animal might decrease freezing by promotion of exploratory activity. Finally, the social buffering effect was not observed in the extinction test, either because the extinction was too effective in the moderate intensity protocol or because the extinction was equally ineffective in the high intensity protocol. Our results suggest that social buffering does not improve fear extinction consolidation.
Collapse
Affiliation(s)
| | | | - Daniela Zolet
- Pontifícia Universidade Católica do Paraná, Curitiba, Parana, Brazil
| | - Natalia Fantin Sardi
- Department of Physiology, Federal University of Parana, Curitiba, Parana, Brazil
| | | | | |
Collapse
|
2
|
Obese E, Ameyaw EO, Biney RP, Adakudugu EA, Woode E. Neuropharmacological Assessment of the Hydroethanolic Leaf Extract of Calotropis procera (Ait). R. Br. (Apocynaceae) in Mice. SCIENTIFICA 2021; 2021:5551380. [PMID: 34306795 PMCID: PMC8270701 DOI: 10.1155/2021/5551380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Calotropis procera has been widely used traditionally for its analgesic and anti-inflammatory effects. It is also reportedly used in ethnomedicine for mental health disorders including epilepsy even in the absence of supporting scientific data. Thus, the potential of the plant to affect neurological functions was evaluated. METHODS Irwin's test was performed to determine the effect of the oral administration of the extract (30-3000 mg kg-1) on gross behaviour and physiological function. The activity meter, rotarod, pentylenetetrazol- (PTZ-) induced convulsion, pentobarbitone-induced sleep test, and the tail immersion tests were used to evaluate the spontaneous activity, neuromuscular function, convulsive threshold, sedation, and analgesic effects of the Calotropis procera extract (30-1000 mg/kg), respectively, in mice. RESULTS Calotropis procera extract (CPE) exhibited significant (p < 0.0001) anticonvulsant and analgesic effects. There was a significant increase in withdrawal latency of the CPE-treated animals in the tail immersion test for analgesia (p < 0.0001), while latency and duration of PTZ-induced convulsions were positively modulated. Calotropis procera extract showed significant (p < 0.0001) central nervous system depressant effects in pentobarbitone-induced hypnosis at 100-1000 mg/kg and spontaneous activity test (30-1000 mg/kg). The extract also depicted impaired motor coordination at 100-1000 mg/kg dose levels. LD50 was estimated to be above 1000 mg kg-1. CONCLUSIONS Calotropis procera extract has significant central nervous system depressant and analgesic effects in mice.
Collapse
Affiliation(s)
- Ernest Obese
- School of Pharmacy and Pharmaceutical Sciences, College of Health & Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Ofori Ameyaw
- School of Pharmacy and Pharmaceutical Sciences, College of Health & Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Robert Peter Biney
- School of Pharmacy and Pharmaceutical Sciences, College of Health & Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Awintiig Adakudugu
- School of Pharmacy and Pharmaceutical Sciences, College of Health & Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Woode
- Department of Pharmacology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
3
|
Shenk J, Lohkamp KJ, Wiesmann M, Kiliaan AJ. Automated Analysis of Stroke Mouse Trajectory Data With Traja. Front Neurosci 2020; 14:518. [PMID: 32523509 PMCID: PMC7262161 DOI: 10.3389/fnins.2020.00518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Quantitative characterization of mouse activity, locomotion and walking patterns requires the monitoring of position and activity over long periods of time. Manual behavioral phenotyping, however, is time and skill-intensive, vulnerable to researcher bias and often stressful for the animals. We present examples for using a platform-independent open source trajectory analysis software, Traja, for semi-automated analysis of high throughput mouse home-cage data for neurobehavioral research. Our software quantifies numerous parameters of movement including traveled distance, velocity, turnings, and laterality which are demonstrated for application to neurobehavioral analysis. In this study, the open source software for trajectory analysis Traja is applied to movement and walking pattern observations of transient stroke induced female C57BL/6 mice (30 min middle cerebral artery occlusion) on an acute multinutrient diet intervention (Fortasyn). After stroke induction mice were single housed in Digital Ventilated Cages [DVC, GM500, Tecniplast S.p.A., Buguggiate (VA), Italy] and activity was recorded 24/7, every 250 ms using a DVC board. Significant changes in activity, velocity, and distance walked are computed with Traja. Traja identified increased walked distance and velocity in Control and Fortasyn animals over time. No diet effect was found in preference of turning direction (laterality) and distance traveled. As open source software for trajectory analysis, Traja supports independent development and validation of numerical methods and provides a useful tool for computational analysis of 24/7 mouse locomotion in home-cage environment for application in behavioral research or movement disorders.
Collapse
Affiliation(s)
- Justin Shenk
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Klara J Lohkamp
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| |
Collapse
|
4
|
Variability of non-clinical behavioral CNS safety assessment: An intercompany comparison. J Pharmacol Toxicol Methods 2019; 99:106571. [DOI: 10.1016/j.vascn.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 11/18/2022]
|
5
|
Burke NN, Ferdousi M, Deaver DR, Finn DP, Roche M, Kelly JP. Locomotor and anti-immobility effects of buprenorphine in combination with the opioid receptor modulator samidorphan in rats. Neuropharmacology 2019; 146:327-336. [PMID: 30553825 DOI: 10.1016/j.neuropharm.2018.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
Modulation of the opioid system has re-emerged as a potential therapeutic avenue for treating depression, with efficacy of a fixed-dose combination of buprenorphine (BUP), a partial μ-opioid receptor (MOR) agonist and κ-opioid receptor (KOR) antagonist, and samidorphan (SAM), a potent MOR antagonist, as an adjuvant treatment in patients with major depressive disorder (MDD). To advance understanding of the mechanism of action underlying this combination, we examined BUP, SAM and their combination in a series of rat behavioural assays. We examined effects on locomotor activity in Sprague Dawley (SD) rats over an extended period of time in a home-cage tracking system, and behavioural despair (immobility) in the forced swim test (FST), a commonly-used test to study antidepressants, in SD and Wistar-Kyoto (WKY) rats. Strain differences in opioid receptor and prepropeptide mRNA expression in the brain (prefrontal cortex, amygdala, hippocampus and striatum) were examined using qRT-PCR. BUP produced locomotor hyperactivity in SD rats from 2 to 6 h following administration, which was attenuated by SAM. In SD rats, a low, but not a high, dose of SAM in combination with BUP counteracted swim-stress induced immobility. This effect was not seen with BUP alone. In contrast, BUP alone reduced immobility in WKY rats, and this effect was enhanced by a low, but not high, dose of SAM. In WKY rats, MOR mRNA expression was higher in the hippocampus and lower in the striatum vs. SD rats. KOR mRNA expression was higher in the amygdala and nociceptin receptor (NOP) mRNA expression was lower in the hippocampus vs. SD rats. Differences in opioid receptor expression may account for the differential behavioural profile of WKY and SD rats. In summary, administration of BUP, a MOR receptor agonist together with a MOR opioid-receptor antagonist, SAM, reduces behavioural despair in animal models traditionally used to study effects of antidepressants.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Behavior, Animal/drug effects
- Buprenorphine/pharmacology
- Depression/drug therapy
- Depression/metabolism
- Hippocampus/metabolism
- Male
- Motor Activity/drug effects
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Opioid Peptides/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Swimming
- Nociceptin
Collapse
Affiliation(s)
- Nikita N Burke
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Physiology, School of Medicine, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Mehnaz Ferdousi
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | | | - David P Finn
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - John P Kelly
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
6
|
Xu P, Liu Y, Wang L, Wu Y, Zhou X, Xiao J, Zheng J, Xue M. Phencynonate S-isomer as a eutomer is a novel central anticholinergic drug for anti-motion sickness. Sci Rep 2019; 9:2000. [PMID: 30760797 PMCID: PMC6374516 DOI: 10.1038/s41598-018-38305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/21/2018] [Indexed: 12/04/2022] Open
Abstract
To compare and evaluate the differences of stereoselective activity, the binding affinity, metabolism, transport and molecular docking of phencynonate isomers to muscarinic acetylcholine receptor (mAChR) were investigated in this study. The rotation stimulation and locomotor experiments were used to evaluate anti-motion sickness effects. The competitive affinity with [3H]-QNB and molecular docking were used for studying the interactions between the two isomers and mAChR. The stereoselective mechanism of isomers was investigated by incubation with rat liver microsomes, a protein binding assay and membrane permeability assay across a Caco-2 cell monolayer using a chiral column HPLC method. The results indicated that S-isomer was more effective against motion sickness and had not anxiogenic action at therapeutic doses. S-isomer has the higher affinity and activity for mAChR in cerebral cortex and acted as a competitive mAChR antagonist. The stereoselective elimination of S-isomer was primarily affected by CYP1B1 and 17A1 enzymes, resulting in a higher metabolic stability and slower elimination. Phencynonate S isomer, as a eutomer and central anticholinergic chiral drug, is a novel anti-motion sickness drug with higher efficacy and lower central side effect. Our data assisted the development of a novel drug and eventual use of S-isomer in clinical practice.
Collapse
Affiliation(s)
- Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Nervous System Drugs, Beijing, 100053, China
| | - Ying Liu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Yanjing Medical College, Capital Medical University, Beijing, 101300, China
| | - Liyun Wang
- Beijing Institutes of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Junhai Xiao
- Beijing Institutes of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jianquan Zheng
- Beijing Institutes of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Engineering Research Center for Nervous System Drugs, Beijing, 100053, China.
| |
Collapse
|
7
|
He Y, Ouyang J, Hu Z, Yang J, Chu Y, Huang S, Yang Y, Liu C. Intervention mechanism of repeated oral GABA administration on anxiety-like behaviors induced by emotional stress in rats. Psychiatry Res 2019; 271:649-657. [PMID: 30791338 DOI: 10.1016/j.psychres.2018.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the effects and mechanism of repeated oral administration of gamma-aminobutyric acid (GABA) on anxiety-like behaviors induced by emotional stress. Male Sprague-Dawley rats were randomly divided into five groups (8 rats each): control, emotional stress model, three emotional stress + GABA-treated groups (0.5, 1, 2 mg/kg). The rats were given empty water bottles after the training of drinking water to induce emotional stress. Each group was treated with saline or different doses of GABA respectively for 21 consecutive days. Then open field and elevated plus maze were used to assess anxiety-like behaviors. Both frontal cortex and plasma NO metabolites nitrate and nitrite (NOx) levels were determined spectrophotometrically. Results showed that oral administration of GABA significantly reversed the stress-induced anxiety-like negative responses dose-dependently. The frontal cortex NOx levels were lower in stressed rats than in control group (P < 0.05), but higher in 2 mg/kg GABA-treated group than stress model group (P < 0.05). On the other hand, NOx levels in plasma showed a gradual decline trend. Collectively, these results suggest that short repeated oral administration of GABA has an anxiolytic-like effect possibly via preventing NO reduction caused by stress and improving availability of NO in the frontal cortex.
Collapse
Affiliation(s)
- Yongjian He
- College of Food Science, South China Agricultural University, Guangzhou, GZ, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Junyan Ouyang
- College of Food Science, South China Agricultural University, Guangzhou, GZ, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou, GZ, China
| | - Jie Yang
- College of Food Science, South China Agricultural University, Guangzhou, GZ, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yue Chu
- College of Food Science, South China Agricultural University, Guangzhou, GZ, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Shaowen Huang
- College of Food Science, South China Agricultural University, Guangzhou, GZ, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yichao Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, GZ, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, GZ, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Moreira da Silva Santos A, Kelly JP, Doyle KM. Dose-Dependent Effects of Binge-Like Methamphetamine Dosing on Dopamine and Neurotrophin Levels in Rat Brain. Neuropsychobiology 2018; 75:63-71. [PMID: 29065400 DOI: 10.1159/000480513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
This study investigated the acute effect of a dose range of low-to-moderate binge-like methamphetamine treatments on the regional expression of neurotrophin proteins in the brain and serum 2 h after the last dose, in addition to assessing the behavioural effects and dopamine neurotransmitter changes produced. Male Sprague-Dawley rats received 4 subcutaneous doses of methamphetamine (0.5, 1, 2, and 4 mg/kg, or saline as a control) 2 h apart. Methamphetamine had a dose-dependent stimulatory effect on locomotor activity over the 8 h of observation. A significant increase in dopamine concentration was observed in the frontal cortex with the highest dose of methamphetamine (2 h after the last dose). This effect was dose- and region-specific, as no significant increase was observed with lower doses, nor was a significant change observed in any other brain region tested. A similar dose- and region-specific increase in brain-derived neurotrophic factor (BDNF) was observed in the frontal cortex with the highest-dose regimen. No significant change occurred with lower doses of methamphetamine, or in any other brain region tested. A reduction in BDNF levels in the serum was also observed with the highest concentration, but not with lower doses. Collectively, this data highlights the importance of the frontal cortex in methamphetamine-induced effects, and also the similar dose-response effect of methamphetamine on dopamine and BDNF expression.
Collapse
|
9
|
Tse K, Sillito R, Keerie A, Collier R, Grant C, Karp NA, Vickers C, Chapman K, Armstrong JD, Redfern WS. Pharmacological validation of individual animal locomotion, temperature and behavioural analysis in group-housed rats using a novel automated home cage analysis system: A comparison with the modified Irwin test. J Pharmacol Toxicol Methods 2018; 94:1-13. [PMID: 29614333 DOI: 10.1016/j.vascn.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The ActualHCA™ system continuously monitors the activity, temperature and behavior of group-housed rats without invasive surgery. The system was validated to detect the contrasting effects of sedative and stimulant test agents (chlorpromazine, clonidine and amphetamine), and compared with the modified Irwin test (mIT) with rectal temperature measurements. METHODS Six male Han Wistar rats per group were used to assess each test agent and vehicle controls in separate ActualHCA™ recordings and mIT. The mIT was undertaken at 15, 30 mins, 1, 2, 4 and 24 h post-dose. ActualHCA™ recorded continuously for 24 h post-dose under 3 experimental conditions: dosed during light phase, dark phase, and light phase with a scheduled cage change at the time of peak effects determined by mIT. RESULTS ActualHCA™ detected an increase stimulated activity from the cage change at 1-2 h post-dose which was obliterated by chlorpromazine and clonidine. Amphetamine increased activity up to 4 h post-dose in all conditions. Temperature from ActualHCA™ was affected by all test agents in all conditions. The mIT showed effects on all 3 test agents up to 4 h post-dose, with maximal effects at 1-2 h post-dose. The maximal effects on temperature from ActualHCA™ differed from mIT. Delayed effects on activity were detected by ActualHCA™, but not on mIT. CONCLUSIONS Continuous monitoring has the advantage of capturing effects over time that may be missed with manual tests using pre-determined time points. This automated behavioural system does not replace the need for conventional methods but could be implemented simultaneously to improve our understanding of behavioural pharmacology.
Collapse
Affiliation(s)
- Karen Tse
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Rowland Sillito
- Actual Analytics Ltd, Appleton Tower, 10 Crichton Street, Edinburgh EH8 9LE, UK
| | - Amy Keerie
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Rachel Collier
- Laboratory Animal Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Claire Grant
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - Natasha A Karp
- Quantitative Biology, Discovery Science, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Cambridge CB4 0WG, UK
| | - Cathy Vickers
- NC3Rs, Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | | | - J Douglas Armstrong
- Actual Analytics Ltd, Appleton Tower, 10 Crichton Street, Edinburgh EH8 9LE, UK; School of Informatics, University of Edinburgh, Appleton Tower, 11 Crichton Street, Edinburgh EH8 9LE, UK
| | - William S Redfern
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
10
|
Redfern WS, Tse K, Grant C, Keerie A, Simpson DJ, Pedersen JC, Rimmer V, Leslie L, Klein SK, Karp NA, Sillito R, Chartsias A, Lukins T, Heward J, Vickers C, Chapman K, Armstrong JD. Automated recording of home cage activity and temperature of individual rats housed in social groups: The Rodent Big Brother project. PLoS One 2017; 12:e0181068. [PMID: 28877172 PMCID: PMC5587114 DOI: 10.1371/journal.pone.0181068] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/26/2017] [Indexed: 12/04/2022] Open
Abstract
Measuring the activity and temperature of rats is commonly required in biomedical research. Conventional approaches necessitate single housing, which affects their behavior and wellbeing. We have used a subcutaneous radiofrequency identification (RFID) transponder to measure ambulatory activity and temperature of individual rats when group-housed in conventional, rack-mounted home cages. The transponder location and temperature is detected by a matrix of antennae in a baseplate under the cage. An infrared high-definition camera acquires side-view video of the cage and also enables automated detection of vertical activity. Validation studies showed that baseplate-derived ambulatory activity correlated well with manual tracking and with side-view whole-cage video pixel movement. This technology enables individual behavioral and temperature data to be acquired continuously from group-housed rats in their familiar, home cage environment. We demonstrate its ability to reliably detect naturally occurring behavioral effects, extending beyond the capabilities of routine observational tests and conventional monitoring equipment. It has numerous potential applications including safety pharmacology, toxicology, circadian biology, disease models and drug discovery.
Collapse
Affiliation(s)
- William S. Redfern
- Drug Safety and Metabolism, AstraZeneca R&D, Babraham Research Campus, Cambridge, United Kingdom
| | - Karen Tse
- Drug Safety and Metabolism, AstraZeneca R&D, Babraham Research Campus, Cambridge, United Kingdom
| | - Claire Grant
- Drug Safety and Metabolism, AstraZeneca R&D, Alderley Park, Cheshire, United Kingdom
| | - Amy Keerie
- Drug Safety and Metabolism, AstraZeneca R&D, Babraham Research Campus, Cambridge, United Kingdom
| | - David J. Simpson
- Drug Safety and Metabolism, AstraZeneca R&D, Alderley Park, Cheshire, United Kingdom
| | - John C. Pedersen
- Drug Safety and Metabolism, AstraZeneca R&D, Babraham Research Campus, Cambridge, United Kingdom
| | - Victoria Rimmer
- Drug Safety and Metabolism, AstraZeneca R&D, Alderley Park, Cheshire, United Kingdom
| | - Lauren Leslie
- Drug Safety and Metabolism, AstraZeneca R&D, Alderley Park, Cheshire, United Kingdom
| | - Stephanie K. Klein
- Drug Safety and Metabolism, AstraZeneca R&D, Babraham Research Campus, Cambridge, United Kingdom
| | - Natasha A. Karp
- Quantitative Biology, IMED, AstraZeneca, Darwin Building (Unit 310), Cambridge Science Park, Cambridge, United Kingdom
| | | | | | - Tim Lukins
- Actual Analytics Ltd, Edinburgh, United Kingdom
| | | | | | | | - J. Douglas Armstrong
- Actual Analytics Ltd, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Appleton Tower, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Gris KV, Coutu JP, Gris D. Supervised and Unsupervised Learning Technology in the Study of Rodent Behavior. Front Behav Neurosci 2017; 11:141. [PMID: 28804452 PMCID: PMC5532435 DOI: 10.3389/fnbeh.2017.00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Quantifying behavior is a challenge for scientists studying neuroscience, ethology, psychology, pathology, etc. Until now, behavior was mostly considered as qualitative descriptions of postures or labor intensive counting of bouts of individual movements. Many prominent behavioral scientists conducted studies describing postures of mice and rats, depicting step by step eating, grooming, courting, and other behaviors. Automated video assessment technologies permit scientists to quantify daily behavioral patterns/routines, social interactions, and postural changes in an unbiased manner. Here, we extensively reviewed published research on the topic of the structural blocks of behavior and proposed a structure of behavior based on the latest publications. We discuss the importance of defining a clear structure of behavior to allow professionals to write viable algorithms. We presented a discussion of technologies that are used in automated video assessment of behavior in mice and rats. We considered advantages and limitations of supervised and unsupervised learning. We presented the latest scientific discoveries that were made using automated video assessment. In conclusion, we proposed that the automated quantitative approach to evaluating animal behavior is the future of understanding the effect of brain signaling, pathologies, genetic content, and environment on behavior.
Collapse
Affiliation(s)
- Katsiaryna V Gris
- Gris Lab of Neuroimmunology, Pediatrics, University of SherbrookeSherbrooke, QC, Canada
| | - Jean-Philippe Coutu
- Gris Lab of Neuroimmunology, Pediatrics, University of SherbrookeSherbrooke, QC, Canada
| | - Denis Gris
- Gris Lab of Neuroimmunology, Pediatrics, University of SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
12
|
Karim TJ, Reyes-Vazquez C, Dafny N. Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats. J Neurophysiol 2017; 118:1501-1514. [PMID: 28615331 DOI: 10.1152/jn.00145.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Methylphenidate (MPD), also known as Ritalin, is a psychostimulant used to treat attention deficit hyperactivity disorder. However, it is increasingly being misused by normal adolescents for recreation and academic advantage. Therefore, it is important to elucidate the behavioral and neurophysiological effects of MPD in normal subjects. MPD inhibits the reuptake of catecholamines, mainly found in the ventral tegmental area (VTA) and locus coeruleus (LC). The VTA and LC normally mediate attention, motivation, and drug reward behaviors. Selective neuronal connections between the VTA and LC have been identified implicating regular interaction between the structures. The objective of this study was to compare the neuronal responses of the VTA and LC to MPD in normal adolescent rats. Animals were implanted with permanent electrodes in the VTA and LC, and neuronal units were recorded following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD exposure. Animals displayed either behavioral sensitization or tolerance to all three doses of MPD. Acute MPD exposure elicited excitation in the majority of all VTA and LC units. Chronic MPD exposure elicited a further increase in VTA and LC neuronal activity in animals exhibiting behavioral sensitization and an attenuation in VTA and LC neuronal activity in animals exhibiting behavioral tolerance, demonstrating neurophysiological sensitization and tolerance, respectively. The similar pattern in VTA and LC unit activity suggests that the two structures are linked in their response to MPD. These results may help determine the exact mechanism of action of MPD, resulting in optimized treatment of patients.NEW & NOTEWORTHY The same dose of 0.6, 2.5, and 10 mg/kg methylphenidate (MPD) elicits either behavioral sensitization or tolerance in adolescent rats. There is a direct correlation between the ventral tegmental area (VTA) and locus coeruleus (LC) neuronal response to chronic MPD exposure. Both the VTA and LC are involved in the behavioral and neurophysiological effects of chronic MPD.
Collapse
Affiliation(s)
- Tahseen J Karim
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Cruz Reyes-Vazquez
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| |
Collapse
|
13
|
Burke NN, Coppinger J, Deaver DR, Roche M, Finn DP, Kelly J. Sex differences and similarities in depressive- and anxiety-like behaviour in the Wistar-Kyoto rat. Physiol Behav 2016; 167:28-34. [DOI: 10.1016/j.physbeh.2016.08.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
|
14
|
Kapadia M, Xu J, Sakic B. The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference. Neurosci Biobehav Rev 2016; 68:195-217. [PMID: 27229758 DOI: 10.1016/j.neubiorev.2016.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
An instrumental step in assessing the validity of animal models of chronic cognitive disorders is to document disease-related deficits in learning/memory capacity. The water maze (WM) is a popular paradigm because of its low cost, relatively simple protocol and short procedure time. Despite being broadly accepted as a spatial learning task, inference of generalized, bona fide "cognitive" dysfunction can be challenging because task accomplishment is also reliant on non-cognitive processes. We review theoretical background, testing procedures, confounding factors, as well as approaches to data analysis and interpretation. We also describe an extended protocol that has proven useful in detecting early performance deficits in murine models of neuropsychiatric lupus and Alzheimer's disease. Lastly, we highlight the need for standardization of inferential criteria on "cognitive" dysfunction in experimental rodents and exclusion of preparations of a limited scientific merit. A deeper appreciation for the multifactorial nature of performance in WM may also help to reveal other deficits that herald the onset of neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Minesh Kapadia
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Josie Xu
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Boris Sakic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
15
|
Zhang LL, Liu HQ, Yu XH, Zhang Y, Tian JS, Song XR, Han B, Liu AJ. The Combination of Scopolamine and Psychostimulants for the Prevention of Severe Motion Sickness. CNS Neurosci Ther 2016; 22:715-22. [PMID: 27160425 DOI: 10.1111/cns.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND AIMS Severe motion sickness is a huge obstacle for people conducting precise aviation, marine or emergency service tasks. The combination of scopolamine and d-amphetamine is most effective in preventing severe motion sickness. However, this combination is not included in any present pharmacopoeia due to the abuse liability of d-amphetamine. We wanted to find a combination to replace it for the treatment of severe motion sickness. METHODS AND RESULTS We compared the efficacy of scopolamine, diphenhydramine, and granisetron (representing three classes of drugs) with different doses, and found that scopolamine was the most effective one. We also found scopolamine inhibited central nervous system at therapeutic doses and caused anxiety. Then, we combined it with different doses of psychostimulants (d-amphetamine, modafinil, caffeine) to find the best combination for motion sickness. The efficacy of scopolamine with modafinil (1 + 10 mg/kg) was equivalent to that of scopolamine with d-amphetamine (1 + 1 mg/kg); This combination also excited central nervous system and abolished the anxiety caused by scopolamine. CONCLUSIONS The optimal dose ratio of scopolamine and modafinil is 1:10. This combination is beneficial for motion sickness and can abolish the side effects of scopolamine. So, it might be a good replacement of scopolamine and d-amphetamine for severe motion sickness.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hong-Qi Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xu-Hong Yu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jia-Sheng Tian
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xu-Rui Song
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Ai-Jun Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
López-Cruz L, Pardo M, Salamone JD, Correa M. Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: studies using medium to high doses in animal models. Behav Brain Res 2014; 270:213-22. [PMID: 24859174 DOI: 10.1016/j.bbr.2014.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Caffeine and theophylline are methylxanthines that are broadly consumed, sometimes at high doses, and act as minor psychostimulants. Both are nonselective adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1 and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions to those of dopamine antagonists. Although the effects of caffeine are widely known, theophylline has been much less well characterized, especially at high doses. METHODS Adult male CD1 mice were used to study the effect of a broad range of doses (25.0, 50.0 or 100.0mg/kg) of caffeine and theophylline on measures of spontaneous locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain areas rich in adenosine and dopamine receptors. In addition, we evaluated possible anxiety and stress effects of these doses. RESULTS Caffeine, at these doses, impaired or suppressed locomotion in several paradigms. However, theophylline was less potent than caffeine at suppressing motor parameters, and even stimulated locomotion. Both drugs induced corticosterone release, however caffeine was more efficacious at intermediate doses. While caffeine showed an anxiogenic profile at all doses, theophylline only did so at the highest dose used (50mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas. CONCLUSION Theophylline has fewer disruptive effects than caffeine on motor parameters and produces less stress and anxiety effects. These results are relevant for understanding the potential side effects of methylxanthines when consumed at high doses.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Marta Pardo
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain; Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| |
Collapse
|
17
|
Reproducibility and relevance of future behavioral sciences should benefit from a cross fertilization of past recommendations and today's technology: "Back to the future". J Neurosci Methods 2014; 234:2-12. [PMID: 24632384 DOI: 10.1016/j.jneumeth.2014.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/24/2022]
Abstract
Thanks to the discovery of novel technologies and sophisticated analysis tools we can now 'see' molecules, genes and even patterns of gene expression, which have resulted in major advances in many areas of biology. Recently, similar technologies have been developed for behavioral studies. However, the wide implementation of such technological progress in behavioral research remains behind, as if there are inhibiting factors for accepting and adopting available innovations. The methods of the majority of studies measuring and interpreting behavior of laboratory animals seem to have frozen in time somewhere in the last century. As an example of the so-called classical tests, we will present the history and shortcomings of one of the most frequently used tests, the open field. Similar objections and critical remarks, however, can be made with regard to the elevated plus maze, light-dark box, various other mazes, object recognition tests, etc. Possible solutions and recommendations on how progress in behavioral neuroscience can be achieved and accelerated will be discussed in the second part of this review.
Collapse
|
18
|
Figueredo YN, Rodríguez EO, Reyes YV, Domínguez CC, Parra AL, Sánchez JR, Hernández RD, Verdecia MP, Pardo Andreu GL. Characterization of the anxiolytic and sedative profile of JM-20: a novel benzodiazepine–dihydropyridine hybrid molecule. Neurol Res 2013; 35:804-12. [DOI: 10.1179/1743132813y.0000000216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Estael Ochoa Rodríguez
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana Ciudad de la Habana, Cuba
| | - Yamila Verdecia Reyes
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Ciudad Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|
19
|
van Dam EA, van der Harst JE, ter Braak CJ, Tegelenbosch RA, Spruijt BM, Noldus LP. An automated system for the recognition of various specific rat behaviours. J Neurosci Methods 2013; 218:214-24. [DOI: 10.1016/j.jneumeth.2013.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
20
|
López-Cruz L, Salamone JD, Correa M. The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies. JOURNAL OF CAFFEINE RESEARCH 2013; 3:9-21. [PMID: 24761272 PMCID: PMC3643311 DOI: 10.1089/jcr.2013.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of caffeine on the behavioral effects of ethanol, including ethanol consumption and abuse, has become a topic of great interest due to the rise in popularity of the so-called energy drinks. Energy drinks high in caffeine are frequently taken in combination with ethanol under the popular belief that caffeine can offset some of the intoxicating effects of ethanol. However, scientific research has not universally supported the idea that caffeine can reduce the effects of ethanol in humans or in rodents, and the mechanisms mediating the caffeine-ethanol interactions are not well understood. Caffeine and ethanol have a common biological substrate; both act on neurochemical processes related to the neuromodulator adenosine. Caffeine acts as a nonselective adenosine A1 and A2A receptor antagonist, while ethanol has been demonstrated to increase the basal adenosinergic tone via multiple mechanisms. Since adenosine transmission modulates multiple behavioral processes, the interaction of both drugs can regulate a wide range of effects related to alcohol consumption and the development of ethanol addiction. In the present review, we discuss the relatively small number of animal studies that have assessed the interactions between caffeine and ethanol, as well as the interactions between ethanol and subtype-selective adenosine receptor antagonists, to understand the basic findings and determine the possible mechanisms of action underlying the caffeine-ethanol interactions.
Collapse
Affiliation(s)
| | - John D. Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
21
|
Simpson J, Ryan C, Curley A, Mulcaire J, Kelly JP. Sex differences in baseline and drug-induced behavioural responses in classical behavioural tests. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:227-36. [PMID: 22353173 DOI: 10.1016/j.pnpbp.2012.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 12/01/2022]
Abstract
Behavioural pharmacology relies on animal models which are primarily validated using the male laboratory rat. Many researchers solely employ male animals in studies; this is primarily due to concerns about the impact of variations in the female estrous cycle on behavioural responses. The objective of the present study therefore was to examine whether sex has any effect in some commonly employed behavioural pharmacology tests. Male and female Sprague Dawley rats were examined in the following behavioural pharmacology tests: diazepam (DZP) effects on anxiolytic behaviour in the elevated plus maze (EPM); desipramine (DMI) effects on immobility time in the forced swim test (FST); amphetamine (AMP) and apomorphine (APO) effects on locomotor activity in the homecage monitoring apparatus (HCMA). Baseline investigations revealed that females were more active than males in all three tests. DZP increased open arm time and entries for males but not for females. Similarly, significant reduction in immobility time with DMI was found for males in the FST, with no effect observed in females. There was a significant effect of AMP dose on distance moved for both sexes; the peak locomotor stimulating effects were seen following 1-2 mg kg⁻¹ AMP doses for males, while 0.5 mg kg⁻¹ produced the greatest effect in females. APO impaired locomotor activity in both sexes. These results demonstrate that male and female rats respond differently to psychotropic drugs. The absence of female responses to the effects of DZP and DMI in the EPM and FST respectively was due to the high baseline activity levels seen with females; thus behavioural tests must be designed to account for sex differences in baseline behaviours to allow for unambiguous extrapolation of the results.
Collapse
Affiliation(s)
- Joy Simpson
- Department of Pharmacology and Therapeutics, NUI Galway, Ireland.
| | | | | | | | | |
Collapse
|
22
|
Sinadinos C, Cowan CM, Wyttenbach A, Mudher A. Increased throughput assays of locomotor dysfunction in Drosophila larvae. J Neurosci Methods 2012; 203:325-34. [PMID: 21925540 DOI: 10.1016/j.jneumeth.2011.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Larval locomotion is a sensitive readout of a range of nervous system deficits in Drosophila, and has been utilised to quantify modulation of the disease phenotype in models of human disease. Single larvae are typically analysed in series using manual quantification of parameters such as contraction rate, or grouped together and studied en-masse. Here, we describe the development of tests for the analysis of several spatially isolated third instar larvae in parallel. We rapidly quantify larval turning rate and velocity during wandering behaviour in a 4 plate assay. In a second test, larvae are recorded as they race along five parallel lanes towards a yeast stimulus. This allows increased throughput analysis of comparative genotypes simultaneously, video archiving, and detection of exacerbation or rescue of defective locomotion in a Drosophila model of tauopathy, as we demonstrate genetically and through delivery of candidate therapeutic chemicals in fly food. The tests are well-suited for rapid comparison of locomotion capability in Drosophila mutants or candidate modulation screens in Drosophila models of human disease.
Collapse
Affiliation(s)
- C Sinadinos
- School of Biological Sciences, University of Southampton, Highfield Campus Building 85, Southampton SO17 1BJ, UK
| | | | | | | |
Collapse
|
23
|
Kelly JP. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Test Anal 2011; 3:439-53. [DOI: 10.1002/dta.313] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/05/2022]
|
24
|
Aragão RDS, Rodrigues MAB, de Barros KMFT, Silva SRF, Toscano AE, de Souza RE, Manhães-de-Castro R. Automatic system for analysis of locomotor activity in rodents—A reproducibility study. J Neurosci Methods 2011; 195:216-21. [DOI: 10.1016/j.jneumeth.2010.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
|
25
|
Zhang Q, Yu YP, Ye YL, Zhang JT, Zhang WP, Wei EQ. Spatiotemporal properties of locomotor activity after administration of central nervous stimulants and sedatives in mice. Pharmacol Biochem Behav 2010; 97:577-85. [PMID: 20863845 DOI: 10.1016/j.pbb.2010.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 09/05/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
In the present study, we investigated the spatiotemporal properties of locomotor activity after administration of CNS sedatives (pentobarbital and diazepam) and stimulants (theophylline and caffeine) in an open field test. The absolute and relative distances traveled in central or peripheral regions within 2 h were analyzed. We found that both pentobarbital and diazepam increased total travel distances, especially within the initial 30 min, when traveling was mainly in the peripheral region. Pentobarbital induced this hyperactivity at higher doses (maximum at 30 mg/kg); while diazepam at higher doses (4 and 8 mg/kg) mainly decreased the traveled distance during 0-1 h but increased that in the periphery during 1-2 h. On the other hand, both theophylline and caffeine generally increased the traveled distance in the central region; this effect lasted longer with increasing dose. Caffeine increased the traveled distance at lower doses (maximum at 10 mg/kg) but decreased it at higher doses (30 and 100 mg/kg) during the initial 1 h. Theophylline exhibited a similar but smaller decrease at higher doses. Thus, we revealed the spatiotemporal properties that sedatives decrease central locomotion but induce a dose-related peripheral hyperactivity while stimulants induce central hyperactivity with a bell-shaped dose-response relation.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China; Department of Pharmacology, Zhejiang Medical College, Hangzhou 310053, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Serotonin-dopamine antagonism ameliorates impairments of spontaneous alternation and locomotor hyperactivity induced by repeated electroconvulsive seizures in rats. Epilepsy Res 2010; 90:221-7. [PMID: 20605414 DOI: 10.1016/j.eplepsyres.2010.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 11/23/2022]
Abstract
We have shown that seven consecutive administrations of electroconvulsive shock (ECS) produce impairment of spontaneous alternation behavior in a Y-maze test and a locomotor hyperactivity in an open-field test even 24h after the last administration in rats. To clarify the mechanisms of the behavioral impairments, we investigated the effect of drugs acting on dopaminergic and serotonergic nervous systems. The dopamine-2 (D(2)) receptor antagonists haloperidol and sulpiride abolished locomotor hyperactivity, but did not show effects on the impairment of spontaneous alternation behavior. The serotonin-2 (5-HT(2)) receptor antagonist ketanserin suppressed the impairment of spontaneous alternation behavior without affecting locomotor hyperactivity. The 5-HT(2) and D(2) receptor antagonist risperidone significantly ameliorated both behavioral impairments. These results suggest that 5-HT(2) receptors and D(2) receptors are associated with repeated ECS-induced impairment of spontaneous alternation behavior and locomotor hyperactivity, respectively.
Collapse
|
27
|
McDermott C, Kelly JP. Comparison of the behavioural pharmacology of the Lister-Hooded with 2 commonly utilised albino rat strains. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1816-23. [PMID: 18727950 DOI: 10.1016/j.pnpbp.2008.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/23/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
The use of animal models (particularly rats) in research for developing drugs for central nervous system diseases is well validated. However a range of strains are often utilised in these models. The Lister-Hooded (LH) strain is beginning to be increasingly used in preclinical investigations. Thus, the objective of the present study was to investigate the comparative behavioural pharmacology of this strain, with the two most widely used rat strains, namely the Sprague-Dawley (SD), and Wistar (W) strains. The tests used were the forced swim test (FST) for antidepressants, the amphetamine-locomotor activity test for antipsychotics, the elevated plus maze (EPM) for anxiolytics, as well as tests of general locomotor activity using home cage monitoring (HCM) and the open field test. Continuous HCM revealed a significantly higher daily activity and lower nocturnal activity for LH compared to the other strains; there were no strain-related differences in the open field test. In the FST, there were no strain differences in immobility time and a similar magnitude of desipramine-induced reduction in immobility across strains. In the locomotor activity test, control LH rats showed significantly higher activity whilst significant amphetamine-induced hyperactivity was seen only with the LH and W strains. In the EPM, control LH rats had a significantly larger percentage of open arm entries, whilst only the SD strain displayed a significant diazepam-induced increase in this parameter. These findings suggest that strain variation can cause markedly different results in behavioural pharmacological tests where locomotor activity plays a significant role, and should be taken into account when selecting a strain for evaluating the behavioural effects of psychotropic drugs. Such differences in locomotor activity in the LH strain could be accounted for by an altered diurnal pattern in this strain.
Collapse
Affiliation(s)
- Claire McDermott
- Department of Pharmacology and Therapeutics, University Road, NUI, Galway, Ireland
| | | |
Collapse
|