1
|
Kim C, Hong KW, Park DH, Chun S, Oh S, Park Y, Kim K, Choi SW, Jo H. Lung- and liver-dominant phenotypes of Korean eight constitution medicine have different profiles of genotype associated with each organ function. Physiol Rep 2022; 10:e15459. [PMID: 36065883 PMCID: PMC9446411 DOI: 10.14814/phy2.15459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022] Open
Abstract
Eight Constitution Medicine (ECM), a ramification of traditional Korean medicine, has categorized people into eight constitutions. The main criteria of classification are inherited differences or predominance in the functions of organs, such as the liver or lung, diagnosed through ECM-specific pulse patterns. This study investigated the association between single nucleotide polymorphism (SNP) genotypes and ECM phenotypes and explored candidate genetic makeups responsible for each constitution using a genome-wide association study (GWAS). Sixty-three healthy volunteers, who were either categorized as the Hepatonia (HEP, n = 32) or Pulmotonia (PUL, n = 31) constitution, were enrolled. HEP and PUL are two contrasting ECM types representing the dominant liver and lung phenotypes, respectively. SNPs were analyzed from the oral mucosa DNA using a commercially available microarray chip that can identify 820,000 SNPs. We conducted GWAS using logistic regression analysis and additive mode genotypes and constructed phylogenetic trees using the SNPhylo program with 8 SNPs specific for the liver phenotype and 15 SNPs for the lung phenotype. Although genome-wide significant SNPs were not found, the phylogenetic tree showed a clear difference between the two constitutions. This is the first observation suggesting genetic involvement in the ECM and can be extended to all ECM constitutions.
Collapse
Affiliation(s)
- Changkeun Kim
- Chaum Life Center, CHA University, Seoul, Republic of Korea
- John Eight Constitution Medical Clinic, Seoul, Republic of Korea
| | | | - Da-Hyun Park
- Theragen Bio Co. Ltd., Suwon-si, Republic of Korea
| | - Sukyung Chun
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Sooyeon Oh
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Youngji Park
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | | | - Sang-Woon Choi
- Chaum Life Center, CHA University, Seoul, Republic of Korea
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Heejin Jo
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Busold-Hagenbeck D, Elmenhorst J, Irtel von Brenndorff C, Hilgers R, Hulpke-Wette M. Frequency and individual severity of arterial blood pressure changes in children and adolescents with attention-deficit/hyperactivity disorder treated with methylphenidate hydrochloride: a prospective non-interventional study. Gen Psychiatr 2020; 33:e100193. [PMID: 32420522 PMCID: PMC7204785 DOI: 10.1136/gpsych-2020-100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Attention-deficit/hyperactivity disorder (ADHD) is a common behavioural disorder in childhood. The psychostimulant methylphenidate hydrochloride (MPH) is one of the major pharmacological options for ADHD. MPH is known to result, on average, in a small increase in arterial blood pressure (BP). However, there are few clinical data regarding the individual influences of MPH on BP among children and adolescents with ADHD. According to the European Union-wide standardised patient information sheet for MPH, BP changes >10 mm Hg compared with baseline values are ‘common’ (ie, ≥1% to <10%) in children and adolescents with ADHD during MPH therapy. Aim To investigate the frequency and individual severity of BP changes in children and adolescents with ADHD during the first 6 months of new MPH therapy. Methods In this study, 44 (77% male) children and adolescents (mean age (SD) 9.13 (1.86) years) with a diagnosis of ADHD according to the International Classification of Diseases, tenth revision, underwent ambulatory BP monitoring before and during the first 6 months of routine MPH therapy. Exclusion criteria were pre-existing MPH therapy and other medications that potentially influence BP or interfere with MPH. The non-interventional study was conducted prospectively at 10 paediatric cardiology centres in Germany and Austria. Results After beginning MPH therapy, 34% of participants (99% CI 15.52% to 52.66%) had BP increases/decreases >10 mm Hg. The mean changes in systolic BP and diastolic BP were 0.87 mm Hg (95% CI -1.75 mm Hg to 3.48 mm Hg) and 1.96 mm Hg (95% CI 0.21 mm Hg to 3.7 mm Hg), respectively. The proportion of participants with initial prehypertension/hypertension was 54.55%. Conclusions In our sample with a high baseline rate of prehypertension/hypertension, BP changes >10 mm Hg during MPH therapy were more frequent than those indicated by the patient information sheet. Moreover, individual BP changes, including increases and decreases >10 mm Hg, resulted in a small average BP increase in the sample, thus reflecting neither the severity nor the direction of individual BP changes. Therefore, the frequency and, due to the common use of the arithmetic mean, the individual severity of BP changes during MPH therapy may be underestimated. Further studies without averaging and with larger samples including patients in primary care settings are warranted.
Collapse
Affiliation(s)
| | | | | | - Reinhard Hilgers
- Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Lower Saxony, Germany
| | - Martin Hulpke-Wette
- Medical Practice for Paediatric Cardiology, Göttingen, Lower Saxony, Germany
| |
Collapse
|
3
|
Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry 2020; 10:8. [PMID: 32066674 PMCID: PMC7026179 DOI: 10.1038/s41398-020-0710-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic variation in peripheral tissues is being widely studied as a molecular biomarker of complex disease and disease-related exposures. To date, few studies have examined differences in DNA methylation associated with attention-deficit hyperactivity disorder (ADHD). In this study, we profiled genetic and methylomic variation across the genome in saliva samples from children (age 7-12 years) with clinically established ADHD (N = 391) and nonpsychiatric controls (N = 213). We tested for differentially methylated positions (DMPs) associated with both ADHD diagnosis and ADHD polygenic risk score, by using linear regression models including smoking, medication effects, and other potential confounders in our statistical models. Our results support previously reported associations between ADHD and DNA methylation levels at sites annotated to VIPR2, and identify several novel disease-associated DMPs (p < 1e-5), although none of them were genome-wide significant. The two top-ranked, ADHD-associated DMPs (cg17478313 annotated to SLC7A8 and cg21609804 annotated to MARK2) are also significantly associated with nearby SNPs (p = 1.2e-46 and p = 2.07e-59), providing evidence that disease-associated DMPs are under genetic control. We also report a genome-wide significant association between ADHD polygenic risk and variable DNA methylation at a site annotated to the promoter of GART and SON (p = 6.71E-8). Finally, we show that ADHD-associated SNPs colocalize with SNPs associated with methylation levels in saliva. This is the first large-scale study of DNA methylation in children with ADHD. Our results represent novel epigenetic biomarkers for ADHD that may be useful for patient stratification, reinforce the importance of genetic effects on DNA methylation, and provide plausible molecular mechanisms for ADHD risk variants.
Collapse
Affiliation(s)
- Michael A. Mooney
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690OHSU Knight Cancer Institute, Portland, OR USA
| | - Peter Ryabinin
- grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Beth Wilmot
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Priya Bhatt
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, Exeter University, Exeter, UK
| | - Joel T. Nigg
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
4
|
Evaluation and Management of Elevated Blood Pressure in Children and Adolescents with Attention Deficit Hyperactivity Disorder. Curr Hypertens Rep 2019; 21:60. [DOI: 10.1007/s11906-019-0968-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Treatment strategies for ADHD: an evidence-based guide to select optimal treatment. Mol Psychiatry 2019; 24:390-408. [PMID: 29955166 DOI: 10.1038/s41380-018-0116-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and impairing disorder affecting children, adolescents, and adults. Several treatment strategies are available that can successfully ameliorate symptoms, ranging from pharmacological to dietary interventions. Due to the increasing range of available options, an informed selection or prioritization of treatments is becoming harder for clinicians. This review aims to provide an evidence-based appraisal of the literature on ADHD treatment, supplemented by expert opinion on plausibility. We outline proposed mechanisms of action of established pharmacologic and non-pharmacologic treatments, and we review targets of novel treatments. The most relevant evidence supporting efficacy and safety of each treatment strategy is discussed. We review the individualized features of the patient that should guide the selection of treatments in a shared decision-making continuum. We provide guidance for optimizing initiation of treatment and follow-up of patients in clinical settings.
Collapse
|
6
|
Cardiovascular Effects of Drugs Used to Treat Attention-Deficit/Hyperactivity Disorder: Part 1: Epidemiology, Pharmacology, and Impact on Hemodynamics and Ventricular Repolarization. Cardiol Rev 2018; 27:113-121. [PMID: 30365404 DOI: 10.1097/crd.0000000000000233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a clinical syndrome characterized by persistent inattention, impulsivity, and hyperactivity. It is most commonly encountered in children and adolescents but may persist into adulthood. A variety of psychostimulant and nonpsychostimulant medications have proven to be successful in reducing inattention, impulsivity, and hyperactivity in those with ADHD. Psychostimulants used to treat ADHD include methylphenidate and related drugs and various amphetamine preparations. Non-psychostimulant medications used to treat ADHD include atomoxetine and two alpha-2 adrenergic agonists: guanfacine extended-release and clonidine extended-release. The psychostimulants and atomoxetine have been shown, on average, to increase heart rate by 3-10 beats/min, systolic blood pressure by 3-8 mm Hg, and diastolic blood pressure by 2-14 mm Hg. These drugs may also delay ventricular repolarization. The alpha-2 adrenergic agonists may reduce heart rate and blood pressure. For these reasons, there is concern about the safety of psychostimulant and nonpsychostimulant medications in patients with ADHD. In part 1 of this review, we discuss the epidemiology and natural history of ADHD, describe the pharmacology of drugs used to treat ADHD, and discuss in detail studies assessing the effects of ADHD drugs on blood pressure, heart or pulse rate, and electrocardiographic indices of ventricular repolarization.
Collapse
|
7
|
Wan M, Bennett BD, Pittman GS, Campbell MR, Reynolds LM, Porter DK, Crowl CL, Wang X, Su D, Englert NA, Thompson IJ, Liu Y, Bell DA. Identification of Smoking-Associated Differentially Methylated Regions Using Reduced Representation Bisulfite Sequencing and Cell type-Specific Enhancer Activation and Gene Expression. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047015. [PMID: 29706059 PMCID: PMC6071796 DOI: 10.1289/ehp2395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Cigarette smoke is a causal factor in cancers and cardiovascular disease. Smoking-associated differentially methylated regions (SM-DMRs) have been observed in disease studies, but the causal link between altered DNA methylation and transcriptional change is obscure. OBJECTIVE Our objectives were to finely resolve SM-DMRs and to interrogate the mechanistic link between SM-DMRs and altered transcription of enhancer noncoding RNA (eRNA) and mRNA in human circulating monocytes. METHOD We integrated SM-DMRs identified by reduced representation bisulfite sequencing (RRBS) of circulating CD14+ monocyte DNA collected from two independent human studies [n=38 from Clinical Research Unit (CRU) and n=55 from the Multi-Ethnic Study of Atherosclerosis (MESA), about half of whom were active smokers] with gene expression for protein-coding genes and noncoding RNAs measured by RT-PCR or RNA sequencing. Candidate SM-DMRs were compared with RRBS of purified CD4+ T cells, CD8+ T cells, CD15+ granulocytes, CD19+ B cells, and CD56+ NK cells (n=19 females, CRU). DMRs were validated using pyrosequencing or bisulfite amplicon sequencing in up to 85 CRU volunteers, who also provided saliva DNA. RESULTS RRBS identified monocyte SM-DMRs frequently located in putative gene regulatory regions. The most significant monocyte DMR occurred at a poised enhancer in the aryl-hydrocarbon receptor repressor gene (AHRR) and it was also detected in both granulocytes and saliva DNA. To our knowledge, we identify for the first time that SM-DMRs in or near AHRR, C5orf55-EXOC-AS, and SASH1 were associated with increased noncoding eRNA as well as mRNA in monocytes. Functionally, the AHRR SM-DMR appeared to up-regulate AHRR mRNA through activating the AHRR enhancer, as suggested by increased eRNA in the monocytes, but not granulocytes, from smokers compared with nonsmokers. CONCLUSIONS Our findings suggest that AHRR SM-DMR up-regulates AHRR mRNA in a monocyte-specific manner by activating the AHRR enhancer. Cell type-specific activation of enhancers at SM-DMRs may represent a mechanism driving smoking-related disease. https://doi.org/10.1289/EHP2395.
Collapse
Affiliation(s)
- Ma Wan
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Gary S Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Michelle R Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Devin K Porter
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Christopher L Crowl
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Dan Su
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Neal A Englert
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Isabel J Thompson
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Pagerols M, Richarte V, Sánchez-Mora C, Rovira P, Soler Artigas M, Garcia-Martínez I, Calvo-Sánchez E, Corrales M, da Silva BS, Mota NR, Victor MM, Rohde LA, Grevet EH, Bau CHD, Cormand B, Casas M, Ramos-Quiroga JA, Ribasés M. Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Sci Rep 2018; 8:1881. [PMID: 29382897 PMCID: PMC5789875 DOI: 10.1038/s41598-018-20194-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Methylphenidate (MPH) is the most frequently used pharmacological treatment in children with attention-deficit/hyperactivity disorder (ADHD). However, a considerable interindividual variability exists in clinical outcome. Thus, we performed a genome-wide association study of MPH efficacy in 173 ADHD paediatric patients. Although no variant reached genome-wide significance, the set of genes containing single-nucleotide polymorphisms (SNPs) nominally associated with MPH response (P < 0.05) was significantly enriched for candidates previously studied in ADHD or treatment outcome. We prioritised the nominally significant SNPs by functional annotation and expression quantitative trait loci (eQTL) analysis in human brain, and we identified 33 SNPs tagging cis-eQTL in 32 different loci (referred to as eSNPs and eGenes, respectively). Pathway enrichment analyses revealed an over-representation of genes involved in nervous system development and function among the eGenes. Categories related to neurological diseases, psychological disorders and behaviour were also significantly enriched. We subsequently meta-analysed the association with clinical outcome for the 33 eSNPs across the discovery sample and an independent cohort of 189 ADHD adult patients (target sample) and we detected 15 suggestive signals. Following this comprehensive strategy, our results provide a better understanding of the molecular mechanisms implicated in MPH treatment effects and suggest promising candidates that may encourage future studies.
Collapse
Affiliation(s)
- Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Iris Garcia-Martínez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eva Calvo-Sánchez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruna Santos da Silva
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nina Roth Mota
- Department of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marcelo Moraes Victor
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Spain
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain. .,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain. .,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
9
|
Chen GF, Wu RG, Li DM, Yu HX, Deng Z, Tian JC. Genomewide association study for seeding emergence and tiller number using SNP markers in an elite winter wheat population. J Genet 2017; 96:177-186. [PMID: 28360404 DOI: 10.1007/s12041-016-0731-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeding emergence and tiller number are the most important traits for wheat (Triticum aestivum L.) yield, but the inheritance of seeding emergence and tillering is poorly understood. We conducted a genomewide association study focussing on seeding emergence and tiller number at different growth stages with a panel of 205 elite winter wheat accessions. The population was genotyped with a high-density Illumina iSelect 90K SNPs assay. A total of 31 loci were found to be associated with seeding emergence rate (SER) and tiller number in different growth stages. Loci distributed among 12 chromosomes accounted for 5.35 to 11.33% of the observed phenotypic variation. With this information, 10 stable SNPs were identified for eventual development of cleaved amplified polymorphic sequence markers for SER and tiller number in different growth stages. Additionally, a set of elite alleles were identified, such as Ra_c14761_1348-T, which may increase SER by 13.35%, and Excalibur_c11045_236-A and BobWhite_c8436_391-T, which may increase the rate of available tillering by 14.78 and 8.47%, respectively. These results should provide valuable information for marker-assisted selection and parental selection in wheat breeding programmes.
Collapse
Affiliation(s)
- Guang Feng Chen
- State Key Laboratory of Crop Biology, Group of Quality Wheat Breeding of Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
10
|
Srivastav S, Walitza S, Grünblatt E. Emerging role of miRNA in attention deficit hyperactivity disorder: a systematic review. ACTA ACUST UNITED AC 2017; 10:49-63. [DOI: 10.1007/s12402-017-0232-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/29/2017] [Indexed: 12/11/2022]
|
11
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cardiovascular Effects of Methylphenidate, Amphetamines and Atomoxetine in the Treatment of Attention-Deficit Hyperactivity Disorder: An Update. Drug Saf 2014; 37:661-76. [DOI: 10.1007/s40264-014-0201-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Bruxel EM, Akutagava-Martins GC, Salatino-Oliveira A, Contini V, Kieling C, Hutz MH, Rohde LA. ADHD pharmacogenetics across the life cycle: New findings and perspectives. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:263-82. [PMID: 24804845 DOI: 10.1002/ajmg.b.32240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a complex and heterogeneous disorder, affecting individuals across the life cycle. Although its etiology is not yet completely understood, genetics plays a substantial role. Pharmacological treatment is considered effective and safe for children and adults, but there is considerable inter-individual variability among patients regarding response to medication, required doses, and adverse events. We present here a systematic review of the literature on ADHD pharmacogenetics to provide a critical discussion of the existent findings, new approaches, limitations, and recommendations for future research. Our main findings are: first, the number of studies continues to grow, making ADHD one of the mental health areas with more pharmacogenetic studies. Second, there has been a focus shift on ADHD pharmacogenetic studies in the last years. There is an increasing number of studies assessing gene-gene and gene-environment interactions, using genome-wide association approaches, neuroimaging, and assessing pharmacokinetic properties. Third and most importantly, the heterogeneity in methodological strategies employed by different studies remains impressive. The question whether pharmacogenetics studies of ADHD will improve clinical management by shifting from trial-and-error approach to a pharmacological regimen that takes into account the individual variability remains unanswered. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Estela Maria Bruxel
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Warikoo N, Faraone SV. Background, clinical features and treatment of attention deficit hyperactivity disorder in children. Expert Opin Pharmacother 2013; 14:1885-906. [PMID: 23865438 DOI: 10.1517/14656566.2013.818977] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) is an early onset, clinically heterogeneous, complex neurobiological disorder, defined by symptoms of inattention and hyperactivity/impulsivity and has been associated with a broad range of impairments for those affected. Additionally, ADHD in children and adolescents is frequently associated with psychiatric comorbidities. This review provides an overview of the epidemiology, neurobiology, genetics, diagnosis and most recent pharmacological approaches for treatment with a focus on safety and efficacy and describes the use of medications used to treat ADHD in special populations. AREAS COVERED PubMed, Cochrane database, Essential Evidence and Uptodate were searched for relevant articles about stimulant and non-stimulant pharmacological approaches in ADHD. EXPERT OPINION Data supporting the safety and efficacy of both stimulant and non-stimulant formulations have significantly grown over the past decade and more efforts are being made to tailor medications to the needs of the patients and their families. Pharmacogenomics research is evolving, but predictors of treatment response and side effects remain largely unknown. Other unmet clinical needs include long-term follow-up studies of the safety and efficacy of medications for those with ADHD alone, or with comorbidities and in special populations including preschoolers.
Collapse
Affiliation(s)
- Nisha Warikoo
- SUNY Upstate Medical University, Department of Psychiatry , 750 East Adams Street, Syracuse, NY 13210-2375 , USA
| | | |
Collapse
|
15
|
Martinez-Raga J, Knecht C, Szerman N, Martinez MI. Risk of serious cardiovascular problems with medications for attention-deficit hyperactivity disorder. CNS Drugs 2013; 27:15-30. [PMID: 23160939 DOI: 10.1007/s40263-012-0019-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a chronic neurodevelopmental disorder characterized by persistent symptoms of inattention, hyperactivity and/or impulsivity. The proportion of patients diagnosed with ADHD receiving pharmacological treatments has increased enormously in recent years. Despite the well established efficacy and the good safety and tolerability profile, there is concern about the potential for rare but serious cardiovascular adverse events, as well as sudden cardiac death, with pharmacotherapies used for treating ADHD in children, adolescents and adults. The present paper aims to comprehensively and critically review the published evidence on the controversial association between medications approved for treating patients with ADHD and the risk of serious cardiovascular problems, specifically the risk of corrected QT interval (QTc) prolongation, and the risk of sudden cardiac death. A comprehensive search of relevant databases (PubMed, EMBASE and PsychINFO) was conducted to identify studies published in peer-reviewed journals until 21 July 2012. Clinical reports, as well as retrospective or prospective population-based studies with children, adolescents or adults as participants, of pharmacotherapies for ADHD reporting cardiovascular adverse events were included. Stimulant medications for ADHD, including methylphenidate and amphetamine derivatives, are generally safe and well tolerated. Small but statistically significant increases in blood pressure (BP) and heart rate (HR) are among the adverse events of stimulant treatment in all age groups. Similarly, the non-stimulant medication atomoxetine has also been associated with increased HR and BP, although as is the case with stimulants, these are generally minor, time limited and of minor clinical significance in children, adolescents or adults. Growing evidence suggests that these medications do not cause sudden and unexpected cardiac death or serious cardiovascular problems including statistically or clinically significant increases in QTc, at therapeutic doses in ADHD patients across the lifespan. Small decreases in mean systolic BP, diastolic BP and HR have been observed in studies with guanfacine-extended release (-XR) or clonidine-XR, two α(2)-adrenergic receptor agonists, administered alone or in combination with psychostimulants to children and adolescents with ADHD. There are also no statistically or clinically significant increases in QTc associated with clonidine or guanfacine. There are no reports of torsades de pointes clearly and directly related to medications used for treating ADHD in patients of all age groups. The risk for serious cardiovascular adverse events, including statistically or clinically significant increases in QTc, and sudden cardiac death associated with stimulants, atomoxetine or α(2)-adrenergic agonists prescribed for ADHD is extremely low and the benefits of treating individual patients with ADHD, after an adequate assessment, outweigh the risks. However, great caution is advised when considering stimulant and non-stimulant medications for patients of any age with a diagnosis of ADHD and a personal or family history or other known risk factors for cardiovascular disease.
Collapse
Affiliation(s)
- Jose Martinez-Raga
- Teaching Unit of Psychiatry and Psychological Medicine, Medicine Department, University of Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
16
|
Elia J, Sackett J, Turner T, Schardt M, Tang SC, Kurtz N, Dunfey M, McFarlane NA, Susi A, Danish D, Li A, Nissley-Tsiopinis J, Borgmann-Winter K. Attention-deficit/hyperactivity disorder genomics: update for clinicians. Curr Psychiatry Rep 2012; 14:579-89. [PMID: 22843546 DOI: 10.1007/s11920-012-0309-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Attention deficit, hyperactivity disorder (ADHD) is familial and highly heritable. Several candidate genes involved in neurotransmission have been identified, however these confer minimal risk, suggesting that for the most part, ADHD is not caused by single common genetic variants. Advances in genotyping enabling investigation at the level of the genome have led to the discovery of rare structural variants suggesting that ADHD is a genomic disorder, with potentially thousands of variants, and common neuronal pathways disrupted by numerous rare variants resulting in similar ADHD phenotypes. Heritability studies in humans also indicate the importance of epigenetic factors, and animal studies are deciphering some of the processes that confer risk during gestation and throughout the post-natal period. These and future discoveries will lead to improved diagnosis, individualized treatment, cures, and prevention. These advances also highlight ethical and legal issues requiring management and interpretation of genetic data and ensuring privacy and protection from misuse.
Collapse
Affiliation(s)
- Josephine Elia
- Department Psychiatry, The University of Pennsylvania, Philadelphia, PA 19104-6209, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Windemuth A, de Leon J, Goethe JW, Schwartz HI, Woolley S, Susce M, Kocherla M, Bogaard K, Holford TR, Seip RL, Ruaño G. Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:213-9. [PMID: 21851846 PMCID: PMC4912220 DOI: 10.1016/j.pnpbp.2011.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 01/11/2023]
Abstract
The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population.
Collapse
Affiliation(s)
- Andreas Windemuth
- Genomas, Inc. and Genetics Research Center, Hartford Hospital, Hartford, CT 06106, USA
| | - Jose de Leon
- Mental Health Research Center at Eastern State Hospital and the Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - John W. Goethe
- Institute of Living, Hartford Hospital, Hartford, CT 06106, USA
| | | | - Stephen Woolley
- Institute of Living, Hartford Hospital, Hartford, CT 06106, USA
| | - Margaret Susce
- Mental Health Research Center at Eastern State Hospital and the Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Mohan Kocherla
- Genomas, Inc. and Genetics Research Center, Hartford Hospital, Hartford, CT 06106, USA
| | - Kali Bogaard
- Genomas, Inc. and Genetics Research Center, Hartford Hospital, Hartford, CT 06106, USA
| | | | - Richard L. Seip
- Genomas, Inc. and Genetics Research Center, Hartford Hospital, Hartford, CT 06106, USA
| | - Gualberto Ruaño
- Genomas, Inc. and Genetics Research Center, Hartford Hospital, Hartford, CT 06106, USA,Corresponding author at: Genetics Research Center, Hartford Hospital, 67 Jefferson Street, Hartford, CT 06106, USA. Tel.: +1 860 545 4574; fax: +1 860 545 4575. (G. Ruaño)
| |
Collapse
|
18
|
Kasarskis A, Yang X, Schadt E. Integrative genomics strategies to elucidate the complexity of drug response. Pharmacogenomics 2012; 12:1695-715. [PMID: 22118053 DOI: 10.2217/pgs.11.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pharmacogenomic investigation from both genome-wide association studies and experiments focused on candidate loci involved in drug mechanism and metabolism has yielded a substantial and increasing list of robust genetic effects on drug therapy in humans. At the same time, reasonably comprehensive molecular data such as gene expression, proteomic and metabolomic data are now available for collections of hundreds to thousands of individuals. If these data are structured in a statistically robust and computationally tractable way, such as a network model, they can aid in the analysis of new pharmacogenomics studies by suggesting novel hypotheses for the regulation of genes involved in drug metabolism and response. Similarly, hypotheses taken from these same models can direct genome-wide association studies by focusing the genome-wide association studies analysis on a number of specific hypotheses informed by the relationships customarily seen between a gene's expression or protein activity and genetic variation at a particular locus. Network models based on other sorts of systematic biological data such as cell-based surveys of drug effect on gene expression and mining of literature and electronic medical records for associations between clinical and molecular phenotypes also promise similar utility. Although surely primitive in comparison with what will be developed, these model-based approaches to leveraging the increasing volume of data generated in the course of patient care and medical research nevertheless suggest a huge opportunity to improve our understanding of biological systems involved in pharmacogenomics and apply them to questions of medical relevance.
Collapse
|
19
|
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurocognitive behavioral developmental disorder most commonly seen in childhood and adolescence, which often extends to the adult years. Relative to a decade ago, there has been extensive research into understanding the factors underlying ADHD, leading to far more treatment options available for both adolescents and adults with this disorder. Novel stimulant formulations have made it possible to tailor treatment to the duration of efficacy required by patients, and to help mitigate the potential for abuse, misuse and diversion. Several new non-stimulant options have also emerged in the past few years. Among these, cognitive behavioral interventions have proven popular in the treatment of adult ADHD, especially within the adult population who cannot or will not use medications, along with the many medication-treated patients who continue to show residual disability.
Collapse
|