1
|
Laroy M, Emsell L, Vandenbulcke M, Bouckaert F. Mapping electroconvulsive therapy induced neuroplasticity: Towards a multilevel understanding of the available clinical literature - A scoping review. Neurosci Biobehav Rev 2025; 173:106143. [PMID: 40222573 DOI: 10.1016/j.neubiorev.2025.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Since its introduction in 1938, the precise mechanism underlying the efficacy of electroconvulsive therapy (ECT) in treating severe psychiatric disorders remains elusive. This paper presents a comprehensive scoping review aimed to collate and summarize findings from clinical studies on neuroplastic changes induced by ECT. The review categorizes neuroplasticity into molecular, structural, and functional domains, offering a multilevel view of current research and its limitations. Molecular findings detail the varied responses of neurotrophic factors and neurotransmitters post-ECT, highlighting inconsistent evidence on their clinical relevance. Structural neuroplasticity is explored through changes in brain volume, cortical thickness, and white matter properties, presenting ECT as a potent stimulator of brain architecture alterations. Functional plasticity examines ECT's impact on brain function through diverse neuroimaging techniques, suggesting significant yet complex modifications in brain network connectivity and activity. The review emphasizes the multilevel nature of these neuroplasticity levels and their collective role in ECT's therapeutic outcomes. Methodological considerations-including sample size, patient heterogeneity, and variability in assessment timing-emerge as recurring themes in the literature, underscoring the need for more consistent and rigorous research designs. By outlining a cohesive framework of changes in neuroplasticity due to ECT, this review provides initial steps towards a deeper comprehension of ECT's mechanisms.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium.
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, Leuven B-3000, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
2
|
Bahri M, Farrahi H, Bahri M, Mahdavinataj H, Batouli SAH. Effects of depression and anxiety symptoms on cognitive inhibition: A cross-sectional study of structural and functional MRI evidence. Medicine (Baltimore) 2025; 104:e42000. [PMID: 40228249 PMCID: PMC11999389 DOI: 10.1097/md.0000000000042000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Evidence shows that depression and anxiety symptoms are associated with reduced cognitive inhibition. Nevertheless, the neural substrates responsible for the effects of depression and anxiety symptoms on cognitive inhibition are yet to be determined. This cross-sectional study adhered to the strengthening the reporting of observational studies in epidemiology (STROBE) checklist. Data from 242 participants from the Iranian brain imaging database were used in this study. To address the neural substrates of depression and anxiety responsible for inhibition, voxel-based morphometry (VBM) analysis and resting-state functional magnetic resonance imaging (RS-fMRI) were used. The depression anxiety stress scale was used to evaluate symptoms of depression and anxiety, and the Stroop test was used for cognitive inhibition. The behavioral results demonstrated that inhibition was significantly negatively correlated with depression and anxiety. The VBM results showed that depression was negatively correlated with gray matter (GM) volume in the left pallidum and the right cerebellum cortex. Additionally, anxiety negatively correlated with GM volume in the left and right cerebellum cortex. RS-fMRI results showed that the thalamus network was positively correlated with depression and anxiety. more importantly, mediation analysis revealed that the right cerebellum cortex and thalamic resting-state network through depression and anxiety had a total indirect effect on inhibition. Clarifying the neural substrates responsible for how depression and anxiety symptoms affect cognitive inhibition could have important implications for interventions aimed at supporting individuals' cognitive health.
Collapse
Affiliation(s)
- Maede Bahri
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Farrahi
- Department of Psychiatry, Kavosh Cognitive Behavior Sciences and Addiction Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Bahri
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hami Mahdavinataj
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- BrainEE Research Group, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang R, Zhou X, Yuan D, Lu Q, Chen X, Zhang Y. Associations between cerebellum and major psychiatric disorders: a bidirectional Mendelian randomization study. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01971-8. [PMID: 39921725 DOI: 10.1007/s00406-025-01971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Despite its small size the cerebellum is an anatomically complex and functionally important part of the brain. Previous studies have demonstrated associations between characteristic features/anatomic anomalies of cerebellum and psychiatric disorders. However, the potential causal relationships are unknown. In this study, a bidirectional two-sample Mendelian randomization approach was employed to investigate single nucleotide polymorphism (SNP) heritability and genetic causal associations between 77 imaging derived phenotypes (IDPs) of the cerebellum and major psychiatric disorder, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia (SCZ) and attention deficit hyperactivity disorder (ADHD). We identified thirty IDPs for which there was evidence of a causal effect on risk of MDD, BD, SCZ and ADHD. For example, 1 s.d. increase in the mean diffusivity (MD) of the left superior cerebellar peduncle was associated with 32% lower odds of BD risk. Reverse MR indicated that psychiatric disorders was associated with fourteen IDPs. For example, MDD were causally associated with three IDPs of gray matter volume (GMV) of right and left X cerebellum, and vermis crus II cerebellum. These results suggested that there were genetic causal associations between psychiatric disorders and certain cerebellum regions, such as the cognitive function of posterior cerebellar lobes and the connection of cerebellar to cerebrum. Further investigations need to enhance prediction and intervention strategies for potential psychiatric disorder risks.
Collapse
Affiliation(s)
- Ruoyi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Xiao Zhou
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Dongling Yuan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Qing Lu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Xinyu Chen
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China
| | - Yi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, 139 Renmin Rd, Changsha, Hunan, 410011, China.
- Medical Psychological Institute of Central South University, Central South University, Changsha, China.
- National Clinical Research Center on Mental Disorders (Xiangya) and National Center for Mental Disorder, Changsha, China.
| |
Collapse
|
4
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
5
|
Lin J, Xiao Y, Yao C, Sun L, Wang P, Deng Y, Pu J, Xue SW. Linking inter-subject variability of cerebellar functional connectome to clinical symptoms in major depressive disorder. J Psychiatr Res 2024; 171:9-16. [PMID: 38219285 DOI: 10.1016/j.jpsychires.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder with remarkable inter-subject variability in clinical manifestations. Neuroimaging changes of the cerebellum have been recently proposed as a way to characterize MDD-related brain disruptions and might further explain various clinical symptoms. However, the cerebellar contributions to MDD clinical heterogeneity remain largely unknown. The analyzed data consisted of 251 MDD patients and 235 matching healthy controls (HC). The inter-subject variability of functional connectomes (IVFC) was estimated via Pearson's correlation analysis between each pair of the cerebellar and cerebral regions based on resting-state functional magnetic resonance imaging (rs-fMRI). A partial least squares (PLS) regression analysis was performed to determine the potential dimension linking the IVFC to clinical symptom measures. The results indicated that similar spatial distribution patterns of the cerebellar IVFC were observed between MDD and HC, but the MDD group exhibited abnormal IVFC alterations in the bilateral Cerebelum_4_5, bilateral Cerebelum_6, Vermis_1_2 and Vermis_8. The PLS model revealed that the IVFC pattern in the left Cerebelum_6 was significantly associated with three HAMD-17 items including the work and activities, psychomotor retardation, and depressed mood. These findings provided new evidence for the cerebellar changes in MDD. Specifically, we found that the altered inter-subject variability measurements correlated with clinical manifestations of this illness. Elucidating this variability could prove helpful for the evaluation of MDD heterogeneity as well as for understanding its pathophysiological mechanism.
Collapse
Affiliation(s)
- Jia Lin
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yang Xiao
- Peking University Sixth Hospital, Peking University, Beijing, PR China
| | - Chi Yao
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Li Sun
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Peng Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yanxin Deng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Jiayong Pu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
6
|
Huggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, et alHuggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Dennis EL, Tate DF, Cifu DX, Walker WC, Wilde EA, Harding IH, Kerestes R, Thompson PM, Morey R. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol Psychiatry 2024; 29:611-623. [PMID: 38195980 PMCID: PMC11153161 DOI: 10.1038/s41380-023-02352-0] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
Collapse
Grants
- I01 RX002171 RRD VA
- R21MH106998 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002170 RRD VA
- 27040 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- R01 MH129832 NIMH NIH HHS
- R01MH105535 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002172 RRD VA
- P41 EB015922 NIBIB NIH HHS
- P50 U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
- I01 RX002174 RRD VA
- W81XWH-10-1-0925 U.S. Department of Defense (United States Department of Defense)
- R56 MH071537 NIMH NIH HHS
- 20ZDA079 National Natural Science Foundation of China (National Science Foundation of China)
- P30 HD003352 NICHD NIH HHS
- R01AG059874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01MH107382 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R61NS120249 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- K01 MH122774 NIMH NIH HHS
- I01 RX003444 RRD VA
- IK2 RX002922 RRD VA
- R01AG022381 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- 31971020 National Natural Science Foundation of China (National Science Foundation of China)
- R21 MH098212 NIMH NIH HHS
- R01 MH113574 NIMH NIH HHS
- K12 HD085850 NICHD NIH HHS
- 1IK2CX001680 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R01 MH071537 NIMH NIH HHS
- HD085850 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R21 MH106998 NIMH NIH HHS
- I01 RX003442 RRD VA
- IK2 CX001680 CSRD VA
- 14848 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01 AG064955 NIA NIH HHS
- R01MH110483 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001135 CSRD VA
- 1IK2RX000709 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R21 MH112956 NIMH NIH HHS
- W81XWH-08-2-0038 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- R01 MH105355 NIMH NIH HHS
- K23MH090366 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118428 NIMH NIH HHS
- R01 MH105535 NIMH NIH HHS
- MH101380 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- WA 1539/8-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- M01RR00039 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- M01 RR000039 NCRR NIH HHS
- I01 RX003443 RRD VA
- R01 MH111671 NIMH NIH HHS
- R01 MH106574 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01MH111671 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH117601 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 1K2RX002922 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- I01 RX001880 RRD VA
- R21MH102634 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- MH071537 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX000622 RRD VA
- R01MH096987 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01MH122774 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 HX003155 HSRD VA
- R01MH106574 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- UL1TR000454 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 RX002076 RRD VA
- R01 MH119227 NIMH NIH HHS
- K01MH118467 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- SFB/TRR 58: C06, C07 Deutsche Forschungsgemeinschaft (German Research Foundation)
- U21A20364 National Natural Science Foundation of China (National Science Foundation of China)
- BK20221554 Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
- UL1 TR000454 NCATS NIH HHS
- R01 MH107382 NIMH NIH HHS
- R01MH119227 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001246 CSRD VA
- MH098212 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R56 AG058854 NIA NIH HHS
- 40-00812-98-10041 ZonMw (Netherlands Organisation for Health Research and Development)
- T32 MH018931 NIMH NIH HHS
- R01 AG076838 NIA NIH HHS
- K23 MH101380 NIMH NIH HHS
- R01 MH043454 NIMH NIH HHS
- R21 MH102634 NIMH NIH HHS
- K01MH118428 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- HD071982 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01 HD071982 NICHD NIH HHS
- K23 MH090366 NIMH NIH HHS
- I01 RX002173 RRD VA
- R01MH105355 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01RX000622 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- W81XWH-12-2-0012 U.S. Department of Defense (United States Department of Defense)
- R61 NS120249 NINDS NIH HHS
- R21MH098198 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118467 NIMH NIH HHS
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- R21MH112956 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- IK2 RX000709 RRD VA
- I01 RX001135 RRD VA
- DA 1222/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 MH096987 NIMH NIH HHS
- 1184403 Department of Health | National Health and Medical Research Council (NHMRC)
- R01 AG022381 NIA NIH HHS
- R01 AG050595 NIA NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01AG050595 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 AG059874 NIA NIH HHS
- VA Mid-Atlantic MIRECC
- Michael J. Fox Foundation for Parkinson’s Research (Michael J. Fox Foundation)
- Amsterdam Academic Medical Center grant
- South African Medical Research Council (SAMRC)
- Ghent University Special Research Fund (BOF) 01J05415
- Julia Kasparian Fund for Neuroscience Research
- McLean Hospital Trauma Scholars Fund, Barlow Family Fund, Julia Kasparian Fund for Neuroscience Research
- Foundation for the Social Development Project of Jiangsu No. BE2022705
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor’s Research Center Grant
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor ’s Research Center Grant
- Fondation Pierre Deniker pour la Recherche et la Prévention en Santé Mentale (Fondation Pierre Deniker pour la Recherche & la Prévention en Santé Mentale)
- PHRC, SFR FED4226
- Dana Foundation (Charles A. Dana Foundation)
- UW | Institute for Clinical and Translational Research, University of Wisconsin, Madison (UW Institute for Clinical and Translational Research)
- National Science Foundation (NSF)
- US VA VISN17 Center of Excellence Pilot funding
- VA National Center for PTSD, Beth K and Stuart Yudofsky Chair in the Neuropsychiatry of Military Post Traumatic Stress Syndrome
- US VA National Center for PTSD, NCATS
- This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 CX001820, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- HFP90-020
- VA VISN6 MIRECC
Collapse
Affiliation(s)
- Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Ahmed Hussain
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Samar Fouda
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Courtney Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jessie L Frijling
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Olff
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawjin
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Global Health Equity, New York University Shanghai, Shanghai, China
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Isreal Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, Texas, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Disaster Mental Health Institute, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Wissam El-Hage
- UMR1253, Université de Tours, Inserm, Tours, France
- CIC1415, CHRU de Tours, Inserm, Tours, France
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | - Marisa Ross
- Northwestern Neighborhood and Network Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carissa W Tomas
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Epidemiology and Social Sciences, Institute of Health and Equity, Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine, Neuroscience and Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
- Departments of Psychiatry and of Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Veterans Affairs (VA) Richmond Health Care, Richmond, VA, USA
| | - Elizabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Vic, Australia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| |
Collapse
|
7
|
Yoshii T, Oishi N, Sotozono Y, Watanabe A, Sakai Y, Yamada S, Matsuda KI, Kido M, Ikoma K, Tanaka M, Narumoto J. Validation of Wistar-Kyoto rats kept in solitary housing as an animal model for depression using voxel-based morphometry. Sci Rep 2024; 14:3601. [PMID: 38351316 PMCID: PMC10864298 DOI: 10.1038/s41598-024-53103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Major depressive disorder is a common psychiatric condition often resistant to medication. The Wistar-Kyoto (WKY) rat has been suggested as an animal model of depression; however, it is still challenging to translate results from animal models into humans. Solitary housing is a mild stress paradigm that can simulate the environment of depressive patients with limited social activity due to symptoms. We used voxel-based morphometry to associate the solitary-housed WKY (sWKY) rat model with data from previous human studies and validated our results with behavioural studies. As a result, atrophy in sWKY rats was detected in the ventral hippocampus, caudate putamen, lateral septum, cerebellar vermis, and cerebellar nuclei (p < 0.05, corrected for family-wise error rate). Locomotor behaviour was negatively correlated with habenula volume and positively correlated with atrophy of the cerebellar vermis. In addition, sWKY rats showed depletion of sucrose consumption not after reward habituation but without reward habituation. Although the application of sWKY rats in a study of anhedonia might be limited, we observed some similarities between the regions of brain atrophy in sWKY rats and humans with depression, supporting the translation of sWKY rat studies to humans.
Collapse
Affiliation(s)
- Takanobu Yoshii
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Johyo, Kyoto, 610-0113, Japan.
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yasutaka Sotozono
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Sakai
- Department of Neural Computation for Decision-Making, ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Kido
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
8
|
Cano M, Lee E, Polanco C, Barbour T, Ellard KK, Andreou B, Uribe S, Henry ME, Seiner S, Cardoner N, Soriano-Mas C, Camprodon JA. Brain volumetric correlates of electroconvulsive therapy versus transcranial magnetic stimulation for treatment-resistant depression. J Affect Disord 2023; 333:140-146. [PMID: 37024015 PMCID: PMC10288116 DOI: 10.1016/j.jad.2023.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) are effective neuromodulation therapies for treatment-resistant depression (TRD). While ECT is generally considered the most effective antidepressant, rTMS is less invasive, better tolerated and leads to more durable therapeutic benefits. Both interventions are established device antidepressants, but it remains unknown if they share a common mechanism of action. Here we aimed to compare the brain volumetric changes in patients with TRD after right unilateral (RUL) ECT versus left dorsolateral prefrontal cortex (lDLPFC) rTMS. METHODS We assessed 32 patients with TRD before the first treatment session and after treatment completion using structural magnetic resonance imaging. Fifteen patients were treated with RUL ECT and seventeen patients received lDLPFC rTMS. RESULTS Patients receiving RUL ECT, in comparison with patients treated with lDLPFC rTMS, showed a greater volumetric increase in the right striatum, pallidum, medial temporal lobe, anterior insular cortex, anterior midbrain, and subgenual anterior cingulate cortex. However, ECT- or rTMS-induced brain volumetric changes were not associated with the clinical improvement. LIMITATIONS We evaluated a modest sample size with concurrent pharmacological treatment and without neuromodulation therapies randomization. CONCLUSIONS Our findings suggest that despite comparable clinical outcomes, only RUL ECT is associated with structural change, while rTMS is not. We hypothesize that structural neuroplasticity and/or neuroinflammation may explain the larger structural changes observed after ECT, whereas neurophysiological plasticity may underlie the rTMS effects. More broadly, our results support the notion that there are multiple therapeutic strategies to move patients from depression to euthymia.
Collapse
Affiliation(s)
- Marta Cano
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Erik Lee
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Polanco
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy Barbour
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen K Ellard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Blake Andreou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Uribe
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael E Henry
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Seiner
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Narcís Cardoner
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain.
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
10
|
Fu Z, Abbott CC, Miller J, Deng ZD, McClintock SM, Sendi MSE, Sui J, Calhoun VD. Cerebro-cerebellar functional neuroplasticity mediates the effect of electric field on electroconvulsive therapy outcomes. Transl Psychiatry 2023; 13:43. [PMID: 36746924 PMCID: PMC9902462 DOI: 10.1038/s41398-023-02312-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe depression and works by applying an electric current through the brain. The applied current generates an electric field (E-field) and seizure activity, changing the brain's functional organization. The E-field, which is determined by electrode placement (right unilateral or bitemporal) and pulse amplitude (600, 700, or 800 milliamperes), is associated with the ECT response. However, the neural mechanisms underlying the relationship between E-field, functional brain changes, and clinical outcomes of ECT are not well understood. Here, we investigated the relationships between whole-brain E-field (Ebrain, the 90th percentile of E-field magnitude in the brain), cerebro-cerebellar functional network connectivity (FNC), and clinical outcomes (cognitive performance and depression severity). A fully automated independent component analysis framework determined the FNC between the cerebro-cerebellar networks. We found a linear relationship between Ebrain and cognitive outcomes. The mediation analysis showed that the cerebellum to middle occipital gyrus (MOG)/posterior cingulate cortex (PCC) FNC mediated the effects of Ebrain on cognitive performance. In addition, there is a mediation effect through the cerebellum to parietal lobule FNC between Ebrain and antidepressant outcomes. The pair-wise t-tests further demonstrated that a larger Ebrain was associated with increased FNC between cerebellum and MOG and decreased FNC between cerebellum and PCC, which were linked with decreased cognitive performance. This study implies that an optimal E-field balancing the antidepressant and cognitive outcomes should be considered in relation to cerebro-cerebellar functional neuroplasticity.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | | | - Jeremy Miller
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Shawn M McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mohammad S E Sendi
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
11
|
Cerebello-cerebral Functional Connectivity Networks in Major Depressive Disorder: a CAN-BIND-1 Study Report. CEREBELLUM (LONDON, ENGLAND) 2023; 22:26-36. [PMID: 35023065 DOI: 10.1007/s12311-021-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.
Collapse
|
12
|
Fu Z, Abbott CC, Sui J, Calhoun VD. Predictive signature of static and dynamic functional connectivity for ECT clinical outcomes. Front Pharmacol 2023; 14:1102413. [PMID: 36755955 PMCID: PMC9899999 DOI: 10.3389/fphar.2023.1102413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: Electroconvulsive therapy (ECT) remains one of the most effective approaches for treatment-resistant depressive episodes, despite the potential cognitive impairment associated with this treatment. As a potent stimulator of neuroplasticity, ECT might normalize aberrant depression-related brain function via the brain's reconstruction by forming new neural connections. Multiple lines of evidence have demonstrated that functional connectivity (FC) changes are reliable indicators of antidepressant efficacy and cognitive changes from static and dynamic perspectives. However, no previous studies have directly ascertained whether and how different aspects of FC provide complementary information in terms of neuroimaging-based prediction of clinical outcomes. Methods: In this study, we implemented a fully automated independent component analysis framework to an ECT dataset with subjects (n = 50, age = 65.54 ± 8.92) randomized to three treatment amplitudes (600, 700, or 800 milliamperes [mA]). We extracted the static functional network connectivity (sFNC) and dynamic FNC (dFNC) features and employed a partial least square regression to build predictive models for antidepressant outcomes and cognitive changes. Results: We found that both antidepressant outcomes and memory changes can be robustly predicted by the changes in sFNC (permutation test p < 5.0 × 10-3). More interestingly, by adding dFNC information, the model achieved higher accuracy for predicting changes in the Hamilton Depression Rating Scale 24-item (HDRS24, t = 9.6434, p = 1.5 × 10-21). The predictive maps of clinical outcomes show a weakly negative correlation, indicating that the ECT-induced antidepressant outcomes and cognitive changes might be associated with different functional brain neuroplasticity. Discussion: The overall results reveal that dynamic FC is not redundant but reflects mechanisms of ECT that cannot be captured by its static counterpart, especially for the prediction of antidepressant efficacy. Tracking the predictive signatures of static and dynamic FC will help maximize antidepressant outcomes and cognitive safety with individualized ECT dosing.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | | | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
13
|
Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the Network Mechanisms of Electroconvulsive Therapy. Biol Psychiatry 2022; 92:193-203. [PMID: 35120710 PMCID: PMC9196257 DOI: 10.1016/j.biopsych.2021.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the oldest and most effective forms of neurostimulation, wherein electrical current is used to elicit brief, generalized seizures under general anesthesia. When electrodes are positioned to target frontotemporal cortex, ECT is arguably the most effective treatment for severe major depression, with response rates and times superior to other available antidepressant therapies. Neuroimaging research has been pivotal in improving the field's mechanistic understanding of ECT, with a growing number of magnetic resonance imaging studies demonstrating hippocampal plasticity after ECT, in line with evidence of upregulated neurotrophic processes in the hippocampus in animal models. However, the precise roles of the hippocampus and other brain regions in antidepressant response to ECT remain unclear. Seizure physiology may also play a role in antidepressant response to ECT, as indicated by early positron emission tomography, single-photon emission computed tomography, and electroencephalography research and corroborated by recent magnetic resonance imaging studies. In this review, we discuss the evidence supporting neuroplasticity in the hippocampus and other brain regions during and after ECT, and their associations with antidepressant response. We also offer a mechanistic, circuit-level model that proposes that core mechanisms of antidepressant response to ECT involve thalamocortical and cerebellar networks that are active during seizure generalization and termination over repeated ECT sessions, and their interactions with corticolimbic circuits that are dysfunctional prior to treatment and targeted with the electrical stimulus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Randall Espinoza
- Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Wade
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Pang Y, Wei Q, Zhao S, Li N, Li Z, Lu F, Pang J, Zhang R, Wang K, Chu C, Tian Y, Wang J. Enhanced default mode network functional connectivity links with electroconvulsive therapy response in major depressive disorder. J Affect Disord 2022; 306:47-54. [PMID: 35304230 DOI: 10.1016/j.jad.2022.03.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/16/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an effective neuromodulatory treatment for major depressive disorder (MDD), especially for cases resistant to antidepressant drugs. While the precise mechanisms underlying ECT efficacy are still unclear, it is speculated that ECT modulates brain connectivity. The current study aimed to investigate the longitudinal effects of ECT on resting-state functional connectivity (FC) in MDD patients and test if baseline FC can be used to predict therapeutic response. METHOD Resting-state functional magnetic resonance imaging data were collected at baseline and following ECT from 33 MDD patients. Whole-brain multi-voxel pattern analysis (MVPA) and region of interest-wise FC analysis were employed to fully investigate ECT effects on brain connectivity. Linear support vector regression was further utilized to predict the improvement in depressive symptoms based on baseline connectivity. RESULTS MVPA revealed a significant ECT effect on FC in the default mode network (DMN), central executive network (CEN), sensorimotor network (SMN), and cerebellar posterior lobe. The FCs within the DMN and between DMN and CEN were enhanced in patients after ECT, and the changed FC between the medial prefrontal cortex and ventrolateral prefrontal cortex was negatively correlated with depressive symptom improvement. Moreover, baseline FC within the DMN and between the DMN and CEN could effectively predict the improvement of depressive symptoms. CONCLUSIONS The findings suggest that the FCs within the DMN and between DMN and CEN may be critical therapeutic targets for effective antidepressant treatment as well as neuromarkers for predicting treatment response.
Collapse
Affiliation(s)
- Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Wei
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, China
| | - Shanshan Zhao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Nan Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianyue Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; China National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei 230022, China.
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, China.
| |
Collapse
|
15
|
Ousdal OT, Brancati GE, Kessler U, Erchinger V, Dale AM, Abbott C, Oltedal L. The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go? Biol Psychiatry 2022; 91:540-549. [PMID: 34274106 PMCID: PMC8630079 DOI: 10.1016/j.biopsych.2021.05.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Electroconvulsive therapy (ECT) is an established treatment choice for severe, treatment-resistant depression, yet its mechanisms of action remain elusive. Magnetic resonance imaging (MRI) of the human brain before and after treatment has been crucial to aid our comprehension of the ECT neurobiological effects. However, to date, a majority of MRI studies have been underpowered and have used heterogeneous patient samples as well as different methodological approaches, altogether causing mixed results and poor clinical translation. Hence, an association between MRI markers and therapeutic response remains to be established. Recently, the availability of large datasets through a global collaboration has provided the statistical power needed to characterize whole-brain structural and functional brain changes after ECT. In addition, MRI technological developments allow new aspects of brain function and structure to be investigated. Finally, more recent studies have also investigated immediate and long-term effects of ECT, which may aid in the separation of the therapeutically relevant effects from epiphenomena. The goal of this review is to outline MRI studies (T1, diffusion-weighted imaging, proton magnetic resonance spectroscopy) of ECT in depression to advance our understanding of the ECT neurobiological effects. Based on the reviewed literature, we suggest a model whereby the neurobiological effects can be understood within a framework of disruption, neuroplasticity, and rewiring of neural circuits. An improved characterization of the neurobiological effects of ECT may increase our understanding of ECT's therapeutic effects, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway.
| | - Giulio E Brancati
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ute Kessler
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vera Erchinger
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Liang HB, Dong L, Cui Y, Wu J, Tang W, Du X, Liu JR. Significant Structural Alterations and Functional Connectivity Alterations of Cerebellar Gray Matter in Patients With Somatic Symptom Disorder. Front Neurosci 2022; 16:816435. [PMID: 35350558 PMCID: PMC8957795 DOI: 10.3389/fnins.2022.816435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Recent studies have revealed a strong association between the cerebellum and psychiatric disorders. However, the structural changes in the cerebellar regions and functional connectivity (FC) patterns in patients with somatic symptom disorder (SSD) have not been elucidated. Methods Thirty-seven patients with SSD (29 drug-naive and 8 medicated patients) and 37 sex- and age-matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging scans. The spatially unbiased infratentorial (SUIT) cerebellar atlas-based voxel-based morphometry was used to investigate the changes in cerebellar regional gray matter (GM). Seed-based FC was further computed to explore the pattern of abnormal FC across the whole brain. Correlations were calculated to investigate the relationship between cerebellar structural (and FC) changes and clinical characteristics. Results After controlling for age, sex, total intracranial volume, medication, and mean FD covariates, all patients with SSD had increased mean GM volume (GMV) in the posterior lobules of the cerebellum bilaterally when compared with HCs, specifically, in the bilateral cerebellar crura I and II. Patients with SSD showed significantly stronger FC between the right crura I and II and bilateral precuneus inferior parietal region, and postcentral gyrus, extending to the superior parietal lobe, cingulate gyrus, and the white matter subgyral. In addition to the two clusters, right lingual gyrus was also a surviving cluster with significantly higher FC. Partial correlation analysis revealed that the degree of regional GMV increases in the two significant clusters and the Hamilton Depression Scale (HAMD) score was negatively correlated. Moreover, the FC of right crura I and II with the left parietal lobe and right lingual gyrus were also negatively associated with the HAMD score. Conclusions SSD exhibited significant microstructural changes and changes in FC pattern in the posterior cerebellar lobe. These results shed new light on the psychological and neural substrates of SSD and may serve as a potential treatment target for SSD based on the cerebellar area.
Collapse
Affiliation(s)
- Huai-Bin Liang
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liao Dong
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Yangyang Cui
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jing Wu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Xiaoxia Du,
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jian-Ren Liu,
| |
Collapse
|
17
|
Hirjak D, Meyer-Lindenberg A, Sambataro F, Fritze S, Kukovic J, Kubera KM, Wolf RC. Progress in sensorimotor neuroscience of schizophrenia spectrum disorders: Lessons learned and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110370. [PMID: 34087392 DOI: 10.1016/j.pnpbp.2021.110370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
The number of neuroimaging studies on movement disorders, sensorimotor, and psychomotor functioning in schizophrenia spectrum disorders (SSD) has steadily increased over the last two decades. Accelerated by the addition of the "sensorimotor domain" to the Research Domain Criteria (RDoC) framework in January 2019, neuroscience research on the role of sensorimotor dysfunction in SSD has gained greater scientific and clinical relevance. To draw attention to recent rapid progress in the field, we performed a triennial systematic review (PubMed search from January 1st, 2018 through December 31st, 2020), in which we highlight recent neuroimaging findings and discuss methodological pitfalls as well as challenges for future research. The identified magnetic resonance imaging (MRI) studies suggest that sensorimotor abnormalities in SSD are related to cerebello-thalamo-cortico-cerebellar network dysfunction. Longitudinal and interventional studies highlight the translational potential of the sensorimotor domain as putative biomarkers for treatment response and as targets for non-invasive neurostimulation techniques in SSD.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Katharina M Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Depping MS, Schmitgen MM, Bach C, Listunova L, Kienzle J, Kubera KM, Roesch-Ely D, Wolf RC. Abnormal Cerebellar Volume in Patients with Remitted Major Depression with Persistent Cognitive Deficits. THE CEREBELLUM 2021; 19:762-770. [PMID: 32642931 PMCID: PMC8214579 DOI: 10.1007/s12311-020-01157-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cerebellar involvement in major depressive disorder (MDD) has been demonstrated by a growing number of studies, but it is unknown whether cognitive functioning in depressed individuals is related to cerebellar gray matter volume (GMV) abnormalities. Impaired attention and executive dysfunction are characteristic cognitive deficits in MDD, and critically, they often persist despite remission of mood symptoms. In this study, we investigated cerebellar GMV in patients with remitted MDD (rMDD) that showed persistent cognitive impairment. We applied cerebellum-optimized voxel-based morphometry in 37 patients with rMDD and with cognitive deficits, in 12 patients with rMDD and without cognitive deficits, and in 36 healthy controls (HC). Compared with HC, rMDD patients with cognitive deficits had lower GMV in left area VIIA, crus II, and in vermal area VIIB. In patients with rMDD, regression analyses demonstrated significant associations between GMV reductions in both regions and impaired attention and executive dysfunction. Compared with HC, patients without cognitive deficits showed increased GMV in bilateral area VIIIB. This study supports cerebellar contributions to the cognitive dimension of MDD. The data also point towards cerebellar area VII as a potential target for non-invasive brain stimulation to treat cognitive deficits related to MDD.
Collapse
Affiliation(s)
- Malte S Depping
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Claudia Bach
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Lena Listunova
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Johanna Kienzle
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Daniela Roesch-Ely
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - R Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany.
| |
Collapse
|
19
|
Porta-Casteràs D, Cano M, Camprodon JA, Loo C, Palao D, Soriano-Mas C, Cardoner N. A multimetric systematic review of fMRI findings in patients with MDD receiving ECT. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110178. [PMID: 33197507 DOI: 10.1016/j.pnpbp.2020.110178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is considered the most effective treatment for major depressive disorder (MDD). In recent years, the pursuit of the neurobiological mechanisms of ECT action has generated a significant amount of functional magnetic resonance imaging (fMRI) research. OBJECTIVE In this systematic review, we integrated all fMRI research in patients with MDD receiving ECT and, importantly, evaluated the level of convergence and replicability across multiple fMRI metrics. RESULTS While according to most studies changes in patients with MDD after ECT appear to be widely distributed across the brain, our multimetric review revealed specific changes involving functional connectivity increases in the superior and middle frontal gyri as the most replicated and across-modality convergent findings. Although this modulation of prefrontal connectivity was associated to ECT outcome, we also identified fMRI measurements of the subgenual anterior cingulate cortex as the fMRI signals most significantly linked to clinical response. CONCLUSION We identified specific prefrontal and cingulate territories which activity and connectivity with other brain regions is modulated by ECT, critically accounting for its mechanism of action.
Collapse
Affiliation(s)
- Daniel Porta-Casteràs
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marta Cano
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan A Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colleen Loo
- School of Psychiatry, University of New South Wales, Sydney, Australia; The Black Dog Institute, Sydney, Australia; St George Hospital, Sydney, Australia
| | - Diego Palao
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carles Soriano-Mas
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM, Carlos III Health Institute, Barcelona, Spain
| | - Narcís Cardoner
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
20
|
Wei Q, Ji Y, Bai T, Zu M, Guo Y, Mo Y, Ji G, Wang K, Tian Y. Enhanced cerebro-cerebellar functional connectivity reverses cognitive impairment following electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2021; 15:798-806. [PMID: 32361944 DOI: 10.1007/s11682-020-00290-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electroconvulsive therapy (ECT), a rapidly acting and effective treatment for major depressive disorder (MDD), is frequently accompanied by cognitive impairment. Recent studies have documented that ECT reorganizes dysregulated inter/intra- connected cerebral networks, including the affective network, the cognitive control network(CCN) and default mode network (DMN).Moreover, cerebellum is thought to play an important role in emotion regulation and cognitive processing. However, little is known about the relationship between cerebro-cerebellar connectivity alterations following ECT and antidepressant effects or cognitive impairment. We performed seed-based resting-state functional connectivity (RSFC) analyses in 28 MDD patients receiving ECT and 20 healthy controls to identify cerebro-cerebellar connectivity differences related to MDD and changes induced by ECT. Six seed regions (three per hemisphere) in the cerebrum were selected for RSFC, corresponding to the affective network, CCN and DMN, to establish cerebro-cerebellar functional connectivity with cerebellum. MDD patients showed increased RSFC between left sgACC and left cerebellar lobule VI after ECT. Ggranger causality analyses (GCA) identified the causal interaction is from left cerebellar lobule VI to left sgACC. Furthermore, increased effective connectivity from left cerebellar lobule VI to left sgACC exhibited positively correlated with the change in verbal fluency test (VFT) score following ECT (r = 0.433, p = 0.039). Our findings indicate that the enhanced cerebro-cerebellar functional connectivity from left lobule VI to left sgACC may ameliorate cognitive impairment induced by ECT. This study identifies a potential neural pathway for mitigation of cognitive impairment following ECT.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Meidan Zu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Yuanyuan Guo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Yuting Mo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Gongjun Ji
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China.
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.
- Department of Medical Psychology, Anhui Medical University, 230022, Hefei, China.
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China.
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| |
Collapse
|
21
|
Zhang YN, Li H, Shen ZW, Xu C, Huang YJ, Wu RH. Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume. World J Clin Cases 2021; 9:1304-1317. [PMID: 33644197 PMCID: PMC7896697 DOI: 10.12998/wjcc.v9.i6.1304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies using voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) of patients with depression, but the differences between patients with bipolar disorder (BD) and unipolar depression (UD) are less known.
AIM To analyze the whole-brain GMV data of patients with untreated UD and BD compared with healthy controls.
METHODS Fourteen patients with BD and 20 with UD were recruited from the Mental Health Center of Shantou University between August 2014 and July 2015, and 20 non-depressive controls were recruited. After routine three-plane positioning, axial T2WI scanning was performed. The connecting line between the anterior and posterior commissures was used as the scanning baseline. The scanning range extended from the cranial apex to the foramen magnum. Categorical data are presented as frequencies and were analyzed using the Fisher exact test.
RESULTS There were no significant intergroup differences in gender, age, or years of education. Disease course, age at the first episode, and Hamilton depression rating scale scores were similar between patients with UD and those with BD. Compared with the non-depressive controls, patients with BD showed smaller GMVs in the right inferior temporal gyrus, left middle temporal gyrus, right middle occipital gyrus, and right superior parietal gyrus and larger GMVs in the midbrain, left superior frontal gyrus, and right cerebellum. In contrast, UD patients showed smaller GMVs than the controls in the right fusiform gyrus, left inferior occipital gyrus, left paracentral lobule, right superior and inferior temporal gyri, and the right posterior lobe of the cerebellum, and larger GMVs than the controls in the left posterior central gyrus and left middle frontal gyrus. There was no difference in GMV between patients with BD and UD.
CONCLUSION Using VBM, the present study revealed that patients with UD and BD have different patterns of changes in GMV when compared with healthy controls.
Collapse
Affiliation(s)
- Yin-Nan Zhang
- Department of Rehabilitation Medicine, Mental Health Center of Shantou University, Shantou 515000, Guangdong Province, China
| | - Hui Li
- Mental Health Center of Shantou University, Shantou 515000, Guangdong Province, China
| | | | - Chang Xu
- Mental Health Center of Shantou University, Shantou 515000, Guangdong Province, China
| | - Yue-Jun Huang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, Guangdong Province, China
| | - Ren-Hua Wu
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
22
|
Batail JM, Coloigner J, Soulas M, Robert G, Barillot C, Drapier D. Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Res Neuroimaging 2020; 305:111158. [PMID: 32889511 DOI: 10.1016/j.pscychresns.2020.111158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
Abstract
An identification of precise biomarkers contributing to poor outcome of a major depressive episode (MDE) has the potential to improve therapeutic strategies by reducing time to symptomatic relief. In a cross-sectional volumetric study with a 6 month clinical follow-up, we performed baseline brain grey matter volume analysis between 2 groups based on illness improvement: 27 MDD patients in the "responder" (R) group (Clinical Global Impression- Improvement (CGI-I) score ≤ 2) and 30 in the "non-responder" (NR) group (CGI-I > 2), using a Voxel Based-Morphometry analysis. NR had significantly smaller Grey Matter (GM) volume in the bilateral thalami, in precentral gyrus, middle temporal gyrus, precuneus and middle cingulum compared to R at baseline. Additionally, they exhibited significant greater GM volume increase in the left anterior lobe of cerebellum and posterior cingulate cortex. The latter result was not significant when participants with bipolar disorder were excluded from the analysis. NR group had higher baseline anxiety scores. Our study has pointed out the role of thalamus in prognosis of MDE. These findings highlight the involvement of emotion regulation in the outcome of MDE. The present study provides a step towards the understanding of neurobiological processes of treatment resistant depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France.
| | - J Coloigner
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - M Soulas
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| | - C Barillot
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| |
Collapse
|
23
|
Cerebellar-cerebral dynamic functional connectivity alterations in major depressive disorder. J Affect Disord 2020; 275:319-328. [PMID: 32734925 DOI: 10.1016/j.jad.2020.06.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/14/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The cerebellum plays an important role in the neural mechanism of depression and its static functional connectivity (FC) with the cerebrum is disrupted in patients with major depressive disorder (MDD). However, cerebellar-cerebral dynamic FC alterations in MDD remain largely unknown. METHODS 50 patients with MDD and 36 well-matched healthy controls underwent resting-state functional magnetic resonance imaging. Cerebellar-cerebral dynamic FC analyses were performed using the cerebellar seeds previously identified as being involved in the executive, default-mode, affective-limbic, and motor networks. Inter-group differences in the cerebellar dynamic FC and their associations with clinical and cognitive variables were examined. RESULTS Compared to healthy controls, patients with MDD had decreased cerebellar-cerebral dynamic FC of the cerebellar subregions connecting with the executive, default-mode and affective-limbic networks. The dynamic FC of the cerebellar subregion connecting with the affective-limbic network was related to severity of depression and anxiety symptoms in MDD patients. The dynamic FC of the cerebellar subregions connecting with the default-mode and affective-limbic networks were related to sustained attention and prospective memory in controls, while the correlations were inverse or non-significant in patients. LIMITATIONS The fairly modest sample size and potential medication effect may increase the instability of the results. CONCLUSIONS Our findings provide further evidence for the pivotal role of the cerebellum in the neuropathology of depression, pointing to potential targets of cerebellar-cerebral pathways for alternative intervention or monitoring therapeutic responses.
Collapse
|
24
|
Zhao L, Luo Z, Qiu S, Jia Y, Zhong S, Chen G, Lai S, Qi Z, Luo X, Huang G, Huang L, Wang Y. Abnormalities of aquaporin-4 in the cerebellum in bipolar II disorder: An ultra-high b-values diffusion weighted imaging study. J Affect Disord 2020; 274:136-143. [PMID: 32469796 DOI: 10.1016/j.jad.2020.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/03/2020] [Accepted: 05/10/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cumulative evidence indicated the cerebellum is involved in the pathophysiology of bipolar disorder (BD). It was reported that the apparent diffusion coefficient from ultra-high b-values (ADCuh) could reflect the function of aquaporin-4 (AQP4) which was involved in neurological disorders. However, no studies have reported the AQP4 alteration in the cerebellum in BD. Therefore, this study aimed to investigate the ADCuh and AQP4 in the cerebellum in BD-II. METHODS Fifty patients with BD-II as well as 43 healthy controls underwent enhance diffusion weighted imaging (eDWI) with ultra-high b-values. The eDWI parameters including ADCuh , pure water diffusion (D) and pseudodiffusion (D*) was measured using regions-of-interest analysis in the superior cerebellar peduncles (SCP), middle cerebellar peduncles (MCP) , cerebellar hemisphere, dentate nuclei, tonsil and vermis of the cerebellum. RESULTS BD-II exhibited increased ADCuh values in the bilateral SCP, cerebellar hemisphere, tonsil and right dentate nuclei, and increased D* and D in the bilateral SCP, and decreased D* in the tonsil. Additionally, there were positive correlations between Hamilton Rating Scale for Depression-24 scores and bilateral ADCuh values in the SCP and cerebellar hemisphere. CONCLUSIONS The alteration of the ADCuh values in the cerebellum may reflect the changes of the AQP4, especially the abnormality of eDWI parameters in the SCP may be a key neurobiological feature of BD-II. The current results provide a novel insight to look into the pathophysiology mechanisms underlying BD-II.
Collapse
Affiliation(s)
- Lianping Zhao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shaojuan Qiu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
25
|
Jolly AJ, Singh SM. Does electroconvulsive therapy cause brain damage: An update. Indian J Psychiatry 2020; 62:339-353. [PMID: 33165343 PMCID: PMC7597699 DOI: 10.4103/psychiatry.indianjpsychiatry_239_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/23/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022] Open
Abstract
Electroconvulsive therapy (ECT) is an effective modality of treatment for a variety of psychiatric disorders. However, it has always been accused of being a coercive, unethical, and dangerous modality of treatment. The dangerousness of ECT has been mainly attributed to its claimed ability to cause brain damage. This narrative review aims to provide an update of the evidence with regard to whether the practice of ECT is associated with damage to the brain. An accepted definition of brain damage remains elusive. There are also ethical and technical problems in designing studies that look at this question specifically. Thus, even though there are newer technological tools and innovations, any review attempting to answer this question would have to take recourse to indirect methods. These include structural, functional, and metabolic neuroimaging; body fluid biochemical marker studies; and follow-up studies of cognitive impairment and incidence of dementia in people who have received ECT among others. The review of literature and present evidence suggests that ECT has a demonstrable impact on the structure and function of the brain. However, there is a lack of evidence at present to suggest that ECT causes brain damage.
Collapse
Affiliation(s)
- Amal Joseph Jolly
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shubh Mohan Singh
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
26
|
Qi S, Abbott CC, Narr KL, Jiang R, Upston J, McClintock SM, Espinoza R, Jones T, Zhi D, Sun H, Yang X, Sui J, Calhoun VD. Electroconvulsive therapy treatment responsive multimodal brain networks. Hum Brain Mapp 2020; 41:1775-1785. [PMID: 31904902 PMCID: PMC7267951 DOI: 10.1002/hbm.24910] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Electroconvulsive therapy is regarded as the most effective antidepressant treatment for severe and treatment-resistant depressive episodes. Despite the efficacy of electroconvulsive therapy, the neurobiological underpinnings and mechanisms underlying electroconvulsive therapy induced antidepressant effects remain unclear. The objective of this investigation was to identify electroconvulsive therapy treatment responsive multimodal biomarkers with the 17-item Hamilton Depression Rating Scale guided brain structure-function fusion in 118 patients with depressive episodes and 60 healthy controls. Results show that reduced fractional amplitude of low frequency fluctuations in the prefrontal cortex, insula and hippocampus, linked with increased gray matter volume in anterior cingulate, medial temporal cortex, insula, thalamus, caudate and hippocampus represent electroconvulsive therapy responsive covarying functional and structural brain networks. In addition, relative to nonresponders, responder-specific electroconvulsive therapy related brain networks occur in frontal-limbic network and are associated with successful therapeutic outcomes. Finally, electroconvulsive therapy responsive brain networks were unrelated to verbal declarative memory. Using a data-driven, supervised-learning method, we demonstrated that electroconvulsive therapy produces a remodeling of brain functional and structural covariance that was unique to antidepressant symptom response, but not linked to memory impairment.
Collapse
Affiliation(s)
- Shile Qi
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University]AtlantaGeorgia
| | | | - Katherine L. Narr
- Department of Neurology, Psychiatry and Biobehavioral SciencesUniversity of CaliforniaLos Angeles (UCLA)California
| | - Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Joel Upston
- Department of PsychiatryUniversity of New MexicoAlbuquerqueNew Mexico
| | - Shawn M. McClintock
- Department of PsychiatryUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Randall Espinoza
- Department of Neurology, Psychiatry and Biobehavioral SciencesUniversity of CaliforniaLos Angeles (UCLA)California
| | - Tom Jones
- Department of PsychiatryUniversity of New MexicoAlbuquerqueNew Mexico
| | - Dongmei Zhi
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hailun Sun
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Yang
- Huaxi Brain Research CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Brain Science, Institute of AutomationBeijingChina
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University]AtlantaGeorgia
| |
Collapse
|
27
|
Laroy M, Bouckaert F, Vansteelandt K, Obbels J, Dols A, Emsell L, Stek M, Vandenbulcke M, Sienaert P. Association between hippocampal volume change and change in memory following electroconvulsive therapy in late-life depression. Acta Psychiatr Scand 2019; 140:435-445. [PMID: 31411340 DOI: 10.1111/acps.13086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Electroconvulsive therapy (ECT)-induced hippocampal volume change (HVC) has been repeatedly described in recent years. The similar time course of HVC and ECT-related cognitive effects suggest a relation, that is to date, understudied. This study investigates whether HVC following ECT predicts the change in memory performance six months after the end of the ECT treatment. METHODS Hippocampal volume (HV) was measured via high-resolution 3D T1-weighted images in 88 patients with late-life depression, within 1 week before and after ECT. Memory performance was assessed before and six months after ECT. Multiple linear regression was used to examine whether change in memory performance could be predicted based on ECT-induced changes in HV. RESULTS Larger right absolute HVC predicts less pronounced improvement on the VAT (visual memory) in the whole sample. For the 8-Word Test (verbal memory), Category Fluency Test (semantic memory), and MMSE, the effect is only present in patients who switched from right unilateral to bitemporal stimulation after six ECT sessions. Absolute HVC in the left hemisphere was not significantly related to cognitive change. CONCLUSION A larger absolute change in right HV during ECT is associated with less improvement in memory performance up to 6 months post-ECT.
Collapse
Affiliation(s)
- M Laroy
- KU Leuven - University of Leuven, Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - F Bouckaert
- KU Leuven - University of Leuven, Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center KU Leuven, Kortenberg, Belgium.,Old Age Psychiatry, KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - K Vansteelandt
- KU Leuven - University of Leuven, Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - J Obbels
- KU Leuven - University of Leuven, Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - A Dols
- Department of Old Age Psychiatry, Amsterdam Public Health Research Institute, Amsterdam Neuroscience, GGZ inGeest/VU University Medical Center, Amsterdam, The Netherlands
| | - L Emsell
- Old Age Psychiatry, KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - M Stek
- Department of Old Age Psychiatry, Amsterdam Public Health Research Institute, Amsterdam Neuroscience, GGZ inGeest/VU University Medical Center, Amsterdam, The Netherlands
| | - M Vandenbulcke
- Old Age Psychiatry, KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - P Sienaert
- KU Leuven - University of Leuven, Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center KU Leuven, Kortenberg, Belgium
| |
Collapse
|
28
|
Xu H, Zhao T, Luo F, Zheng Y. Dissociative changes in gray matter volume following electroconvulsive therapy in major depressive disorder: a longitudinal structural magnetic resonance imaging study. Neuroradiology 2019; 61:1297-1308. [DOI: 10.1007/s00234-019-02276-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022]
|
29
|
Mohn C, Rund BR. Neurognitive function and symptom remission 2 years after ECT in major depressive disorders. J Affect Disord 2019; 246:368-375. [PMID: 30597298 DOI: 10.1016/j.jad.2018.12.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/19/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is a lack of knowledge of possible cognitive side effects of electroconvulsive therapy (ECT) beyond the first few months after treatment. We aim to describe cognitive effects and symptom remission 2 years after ECT in major depressive disorders. METHOD Twenty-seven depression patients were assessed with the MATRICS Consensus Cognitive Battery (MCCB) and the Everyday Memory Questionnaire (EMQ) before and 2 years after ECT. Their scores were compared with those of healthy matches. Depression and remission status were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). Main statistical analyses were ANOVAs and linear mixed model tests. RESULTS At baseline, the patient group was significantly impaired on 7 of 10 cognitive tests compared to the control group. Two years later, this gap was reduced to impairment on 5 of 10 tests. Within the patient group, neurocognitive function either increased significantly from baseline to follow-up, or there was no change. Two years after ECT, 62.9% of the patients were in remission. Those in remission reported better subjective memory function, but displayed no different neuropsychological test results, compared to the non-remitters. LIMITATIONS Major limitations were low sample size and lack of uniform ECT procedure. CONCLUSIONS We found improved neurocognitive function 2 years after ECT. This effect occurred regardless of remission status, suggesting that ECT induces unique cognitive boosting processes.
Collapse
Affiliation(s)
- Christine Mohn
- Research Department, Vestre Viken Hospital Trust, Wergelands gate 10, 3004 Drammen, Norway.
| | - Bjørn Rishovd Rund
- Research Department, Vestre Viken Hospital Trust, Wergelands gate 10, 3004 Drammen, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Cano M, Lee E, Cardoner N, Martínez-Zalacaín I, Pujol J, Makris N, Henry M, Via E, Hernández-Ribas R, Contreras-Rodríguez O, Menchón JM, Urretavizcaya M, Soriano-Mas C, Camprodon JA. Brain Volumetric Correlates of Right Unilateral Versus Bitemporal Electroconvulsive Therapy for Treatment-Resistant Depression. J Neuropsychiatry Clin Neurosci 2019; 31:152-158. [PMID: 30458664 PMCID: PMC7857738 DOI: 10.1176/appi.neuropsych.18080177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The selection of a bitemporal (BT) or right unilateral (RUL) electrode placement affects the efficacy and side effects of ECT. Previous studies have not entirely described the neurobiological underpinnings of such differential effects. Recent neuroimaging research on gray matter volumes is contributing to our understanding of the mechanism of action of ECT and could clarify the differential mechanisms of BT and RUL ECT. METHODS To assess the whole-brain gray matter volumetric changes observed after treating patients with treatment-resistant depression with BT or RUL ECT, the authors used MRI to assess 24 study subjects with treatment-resistant depression (bifrontotemporal ECT, N=12; RUL ECT, N=12) at two time points (before the first ECT session and after ECT completion). RESULTS Study subjects receiving BT ECT showed gray matter volume increases in the bilateral limbic system, but subjects treated with RUL ECT showed gray matter volume increases limited to the right hemisphere. The authors observed significant differences between the two groups in midtemporal and subcortical limbic structures in the left hemisphere. CONCLUSIONS These findings highlight that ECT-induced gray matter volume increases may be specifically observed in the stimulated hemispheres. The authors suggest that electrode placement may relevantly contribute to the development of personalized ECT protocols.
Collapse
Affiliation(s)
- Marta Cano
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain,Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Lee
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Narcís Cardoner
- CIBERSAM, Carlos III Health Institute, Madrid, Spain,Mental Health Department, Parc Taulí Sabadell, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jesús Pujol
- CIBERSAM, Carlos III Health Institute, Madrid, Spain,MRI Research Unit, Radiology Department, Hospital del Mar, Barcelona, Spain
| | - Nikos Makris
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Henry
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esther Via
- CIBERSAM, Carlos III Health Institute, Madrid, Spain,Sant Joan de Déu Barcelona-Children’s Hospital, Barcelona, Spain
| | - Rosa Hernández-Ribas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Oren Contreras-Rodríguez
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - José M. Menchón
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Mikel Urretavizcaya
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain,CIBERSAM, Carlos III Health Institute, Madrid, Spain,Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan A. Camprodon
- Department of Psychiatry, Massacuhsetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
He Y, Wang Y, Chang TT, Jia Y, Wang J, Zhong S, Huang H, Sun Y, Deng F, Wu X, Niu C, Huang L, Ma G, Huang R. Abnormal intrinsic cerebro-cerebellar functional connectivity in un-medicated patients with bipolar disorder and major depressive disorder. Psychopharmacology (Berl) 2018; 235:3187-3200. [PMID: 30206663 DOI: 10.1007/s00213-018-5021-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/29/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The cerebellum plays an important role in depression. Cerebro-cerebellar circuits have been found to show aberrance in bipolar disorder (BD) and major depressive disorder (MDD). However, whether the cerebro-cerebellar connectivity contributes equally to the pathologic mechanisms of BD and MDD remains unknown. METHODS We recruited 33 patients with MDD, 32 patients with BD, and 43 healthy controls (HC). We selected six seed regions (three per hemisphere) in the cerebrum, corresponding to the affective, cognitive control, and default mode networks, to establish cerebro-cerebellar functional connectivity maps. RESULTS Relative to the HC, both the BD and MDD patients exhibited weaker negative connectivity between the right subgenual anterior cingulate cortex and the cerebellar vermis IV_V (pBD = 0.03, pMDD = 0.001) and weaker positive connectivity between the left precuneus and the left cerebellar lobule IX (pBD = 0.043, pMDD = 0.000). Moreover, the MDD patients showed weaker positive connectivity in the left precuneus-left cerebellar lobule IX circuit than the BD patients (p = 0.049). In addition, the BD patients showed weaker positive connectivity in the right dorsolateral prefrontal cortex-left cerebellar lobule Crus Ι circuit compared to the HC (p = 0.002) or the MDD patients (p = 0.013). Receiver operating characteristic curves analyses showed that the altered cerebro-cerebellar connectivities could be used to distinguish the patients from the HC with relatively high accuracy. CONCLUSIONS Our findings suggested that differences in connectivity of cerebro-cerebellar circuits, which are involved in affective or cognitive functioning, significantly contributed to BD and MDD.
Collapse
Affiliation(s)
- Yuan He
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Ting-Ting Chang
- Department of Psychology, Research Center for Mind, Brain & Learning, National Chengchi University, Taipei, Taiwan
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huiyuan Huang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Yao Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Feng Deng
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Wu
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Chen Niu
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friend Hospital, Yinghua Dongjie 2, Chaoyang District, Beijing, 100029, China.
| | - Ruiwang Huang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Brain Imaging Center, School of Psychology, South China Normal University, Zhongshan Avenue West 55, Tianhe District, Guangzhou, 510631, China.
| |
Collapse
|
32
|
Gbyl K, Videbech P. Electroconvulsive therapy increases brain volume in major depression: a systematic review and meta-analysis. Acta Psychiatr Scand 2018; 138:180-195. [PMID: 29707778 DOI: 10.1111/acps.12884] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The main purpose of this review was to synthesise evidence on ECT's effects on brain's structure. METHOD A systematic literature review of longitudinal studies of depressed patients treated with ECT using magnetic resonance imaging (MRI) and meta-analysis of ECT's effect on hippocampal volume. RESULTS Thirty-two studies with 467 patients and 285 controls were included. The MRI studies did not find any evidence of ECT-related brain damage. All but one of the newer MRI volumetric studies found ECT-induced volume increases in certain brain areas, most consistently in hippocampus. Meta-analysis of effect of ECT on hippocampal volume yielded pooled effect size: g = 0.39 (95% CI = 0.18-0.61) for the right hippocampus and g = 0.31 (95% CI = 0.09-0.53) for the left. The DTI studies point to an ECT-induced increase in the integrity of white matter pathways in the frontal and temporal lobes. The results of correlations between volume increases and treatment efficacy were inconsistent. CONCLUSION The MRI studies do not support the hypothesis that ECT causes brain damage; on the contrary, the treatment induces volume increases in fronto-limbic areas. Further studies should explore the relationship between these increases and treatment effect and cognitive side effects.
Collapse
Affiliation(s)
- K Gbyl
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, Glostrup, Denmark
| | - P Videbech
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, Glostrup, Denmark
| |
Collapse
|
33
|
Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder. J Affect Disord 2018; 233:21-35. [PMID: 29150145 DOI: 10.1016/j.jad.2017.10.049] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Current practice for selecting pharmacological and non-pharmacological antidepressant treatments has yielded low response and remission rates in Major Depressive Disorder (MDD). Neuroimaging biomarkers of brain structure and function may be useful in guiding treatment selection by predicting response vs. non-response outcomes. METHODS In this review, we summarize data from studies examining predictors of treatment response using structural and functional neuroimaging modalities, as they pertain to pharmacotherapy, psychotherapy, and stimulation treatment strategies. A literature search was conducted in OVID Medline, EMBASE, and PsycINFO databases with coverage from January 1990 to January 2017. RESULTS Several imaging biomarkers of therapeutic response in MDD emerged: frontolimbic regions, including the prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, and insula were regions of interest. Since these sub-regions are implicated in the etiology of MDD, their association with response outcomes may be the result of treatments having a normalizing effect on structural or activation abnormalities. LIMITATIONS The direction of findings is inconsistent in studies examining these biomarkers, and variation across 'biotypes' within MDD may account for this. Limitations in sample size and differences in methodology likely also contribute. CONCLUSIONS The identification of accurate, reliable neuroimaging biomarkers of treatment response holds promise toward improving treatment outcomes and reducing burden of illness for patients with MDD. However, before these biomarkers can be translated into clinical practice, they will need to be replicated and validated in large, independent samples, and integrated with data from other biological systems.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Aberrant resting-state cerebellar blood flow in major depression. J Affect Disord 2018; 226:227-231. [PMID: 28992587 DOI: 10.1016/j.jad.2017.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/09/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Abnormal cortical cerebral blood flow and gray matter volume have been frequently reported in patients with major depressive disorder (MDD). In contrast, although the role of the cerebellum in MDD pathophysiology has attracted considerable interest more recently, studies investigating both functional and structural aspects of cerebellar integrity are scarce. METHODS In this study, we used structural and functional magnetic resonance imaging (MRI) to investigate cerebellar volume and regional cerebellar blood flow (rCBF) at rest in clinically acute MDD patients (n = 22) and healthy controls (n = 18). We acquired high-resolution structural images at 3 T together with perfusion images obtained with continuous arterial spin labeling. Cerebellar structure and function were investigated using cerebellum-optimized analysis techniques. RESULTS Markedly increased rCBF was found in bilateral cerebellar areas VIIa and VIIIb (p < 0.05 family-wise-error [FWE] corrected). Significant differences in cerebellar volume between patients and controls were not found (p < 0.05, FWE-corrected). Left cerebellar area VIIa perfusion was significantly associated with depressive symptoms, as measured by the Hamilton Depression Rating Scale. LIMITATIONS Potential limitations of this study include the modest sample size, the cross-sectional design, the lack of task-related imaging and the heterogeneity of drug treatment. CONCLUSIONS The data suggest contributions of "affective" cerebellar regions to MDD pathophysiology and symptom expression. While cerebellar perfusion at rest is compromised in MDD, cerebellar volume seems to be less affected.
Collapse
|
35
|
Depping MS, Schmitgen MM, Kubera KM, Wolf RC. Cerebellar Contributions to Major Depression. Front Psychiatry 2018; 9:634. [PMID: 30555360 PMCID: PMC6281716 DOI: 10.3389/fpsyt.2018.00634] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
Extending beyond the motor domain, the cerebellum is involved in various aspects of cognition and affect. Multidisciplinary evidence has demonstrated topographic organization of higher-order cognitive functions within the cerebellum. We here review recent neuroimaging research that indicates cerebellar contributions to major depressive disorder (MDD). At the structural level, increased volume of lobule IX has been demonstrated in MDD patients, independent of acute or remitted disease state. Successful treatment with electroconvulsive therapy has been associated with increased lobule VIIA volume in depressed patients. At the functional level, connectivity analyses have shown reduced cerebro-cerebellar coupling of lobules VI and VIIA/B with prefrontal, posterior parietal, and limbic regions in patients with MDD. As a limitation, most of this evidence is based on smaller patient samples with incomplete phenotypic and neuropsychological characterization and with heterogenous medication. Some studies did not apply cerebellum-optimized data analysis protocols. Taken together, MDD pathophysiology affects distinct subregions of the cerebellum that communicate with cortical networks subserving cognitive and self-referential processing. This mini-review synthesizes research evidence from cerebellar structural and functional neuroimaging in depression, and provides future perspectives for neuroimaging of cerebellar contributions to MDD.
Collapse
Affiliation(s)
- Malte S Depping
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Xu LY, Xu FC, Liu C, Ji YF, Wu JM, Wang Y, Wang HB, Yu YQ. Relationship between cerebellar structure and emotional memory in depression. Brain Behav 2017; 7:e00738. [PMID: 28729943 PMCID: PMC5516611 DOI: 10.1002/brb3.738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A few studies have been conducted on the relationship between cerebellar volume and emotional memory or clinical severity in major depressive disorder (MDD). In this study, we aimed to compare the volume and density of the cerebellar gray matter (GM) in patients with MDD and in healthy controls (HCs) and explore the association between these cerebellar parameters and measurements of emotional memory and clinical severity. METHOD Voxel-based morphometry (VBM) and Individual Brain Atlases using Statistical Parametric Mapping (IBASPM) were used to assess GM density and volume in the cerebellum, respectively, in patients with MDD and the HCs. Indicators of emotional memory performance were measured, including the hit rate (HR), rate of false alarm (FA), precision (Pr = HR - FA) and emotional memory enhancement [∆Pr = Pr(emotion) - Pr(neutral)] values. Beck Depression Inventory (BDI) scores were used to measure the severity of depression. RESULTS In the patients with MDD, the GM density was decreased in three cerebellar cortical regions and increased in three cerebellar cortical regions (p < .005). The GM volumes in eight cerebellar cortical regions were significantly smaller in the patients with MDD than in the HC subjects (p < .05). In the patients with MDD, the GM volume was correlated with the ∆Pr (p < .05) in two cerebellar cortical regions. The BDI scores were significantly correlated with the relative GM densities (p < .05) in 5 cerebellar cortical regions, and the GM volumes in 13 cerebellar cortical regions were correlated with the BDI scores in patients with MDD. CONCLUSIONS Emotional memory and the severity of depressive symptoms are associated with structural changes in both the posterior and anterior GM regions in the cerebellum in patients with MDD. These findings could be useful for improving our understanding of the neurobiological mechanisms underlying emotional memory and explaining the abnormalities of the neural correlates that are associated with MDD.
Collapse
Affiliation(s)
- Li-Yan Xu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Fang-Cheng Xu
- Department of Neurology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Can Liu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Yi-Fu Ji
- The Centre of Anhui Mental Health and The Fourth Hospital of Hefei Hefei China
| | - Jin-Min Wu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Ying Wang
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Hai-Bao Wang
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Yong-Qiang Yu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|