1
|
Shalan MG. Mitigating lead acetate-induced histopathologic and physiologic disorders in rats receiving vitamin C and glutathione supplement. Heliyon 2025; 11:e41256. [PMID: 39801977 PMCID: PMC11719362 DOI: 10.1016/j.heliyon.2024.e41256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
The present work examines the extreme impact of lead acetate and the preventive function of co-supplementation with vitamin C and glutathione. It hypothesizes that these supplements can alleviate the poisonous effects of lead exposure. Eighty male albino rats, weighing 100 ± 15 g, were categorized into four groups: the control group, the second group receiving daily supplements of 100 mg/kg of body weight glutathione and 1 mg/100 g of body weight vitamin C orally, the third group receiving 100 mg/kg body weight of lead acetate orally daily, and the fourth group receiving similar oral dosages of lead acetate along with glutathione and vitamin C. Lead exposure significantly decreased body weight and relative testis weight, while relative organ weights for the liver, kidney, and spleen increased significantly. Additionally, lead acetate increased plasma glutamic pyruvic transaminase and glutamic oxaloacetic transaminase activities and plasma creatinine concentration (p < 0.05). Lead concentration rose significantly in blood, urine, liver, and kidney (p < 0.05). Examinations revealed that lead acetate exposure induced apoptotic DNA fragmentation in hepatocytes, significantly increasing caspase-3 activity (91 %) and annexin V indicators. Moreover, lead exposure induced a decrease in sperm count and motility, along with an increase in abnormal sperm morphology. However, vitamin C and glutathione supplementation significantly improved these adverse impacts, suggesting their protective function in counteracting the harmful impacts of lead acetate in different organs.
Collapse
Affiliation(s)
- Mohamed Gaber Shalan
- Zoology and Entomology Department, Faculty of Science, Arish University, North Sinai, Egypt
| |
Collapse
|
2
|
Liu F, Bai Q, Tang W, Zhang S, Guo Y, Pan S, Ma X, Yang Y, Fan H. Antioxidants in neuropsychiatric disorder prevention: neuroprotection, synaptic regulation, microglia modulation, and neurotrophic effects. Front Neurosci 2024; 18:1505153. [PMID: 39703344 PMCID: PMC11655488 DOI: 10.3389/fnins.2024.1505153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Oxidative stress, caused by an imbalance between the generation of reactive oxygen species (ROS) and the body's intrinsic antioxidant defenses, plays a critical role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. Beyond these conditions, recent evidence indicates that dysregulated redox balance is implicated in neuropsychiatric disorders, including schizophrenia, major depressive disorder, and anxiety disorders. Preclinical and clinical studies have demonstrated the potential of antioxidants, such as N-acetylcysteine, sulforaphane, alpha-lipoic acid, L-carnitine, ascorbic acid, selenocompounds, flavones and zinc, in alleviating neuropsychiatric symptoms by mitigating excitotoxicity, enhancing synaptic plasticity, reducing microglial overactivation and promoting synaptogenesis. This review explores the role of oxidative stress in the pathogenesis of neuropsychiatric disorders. It provides an overview of the current evidence on antioxidant therapy's pharmacological effects, as demonstrated in animal models and clinical studies. It also discusses the underlying mechanisms and future directions for developing antioxidant-based adjuvant therapies. Given the limitations and side effects of existing treatments for neuropsychiatric disorders, antioxidant therapy presents a promising, safer alternative. Further research is essential to deepen our understanding and investigate the clinical efficacy and mechanisms underlying these therapies.
Collapse
Affiliation(s)
- Fangfei Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qianqian Bai
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Wenchao Tang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shumin Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yan Guo
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shunji Pan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyu Ma
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanhui Yang
- Department of Trauma Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research and Innovation, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Hedayatikatouli F, Kalyn M, Elsaid D, Mbesha HA, Ekker M. Neuroprotective Effects of Ascorbic Acid, Vanillic Acid, and Ferulic Acid in Dopaminergic Neurons of Zebrafish. Biomedicines 2024; 12:2497. [PMID: 39595063 PMCID: PMC11592154 DOI: 10.3390/biomedicines12112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a debilitating neurodegenerative disease that targets the nigrostriatal dopaminergic (DAnergic) system residing in the human midbrain and is currently incurable. The aim of this study is to investigate the neuroprotective effects of ascorbic acid, vanillic acid, and ferulic acid in a zebrafish model of PD induced by MPTP by assessing the impact of these compounds on DAnergic neurons, focusing on gene expression, mitochondrial dynamics, and cellular stress responses. Methods/Results: Following exposure and qPCR and immunohistochemical analyses, ascorbic acid enhanced DAnergic function, indicated by an upregulation of the dopamine transporter (dat) gene and increased eGFP+ DAnergic cells, suggesting improved dopamine reuptake and neuroprotection. Ascorbic acid also positively affected mitochondrial dynamics and stress response pathways, countering MPTP-induced dysregulation. Vanillic acid only had modest, if any, neuroprotective effects on DAnergic neurons following MPTP administration. Ferulic acid exhibited the largest neuroprotective effects through the modulation of gene expression related to DAnergic neurons and mitochondrial dynamics. Conclusions: These findings suggest that ascorbic acid and ferulic acid can act as potential protective interventions for DAnergic neuron health, demonstrating various beneficial effects at the molecular and cellular levels. However, further investigation is needed to translate these results into clinical applications. This study enhances the understanding of neuroprotective strategies in neurodegenerative diseases, emphasizing the importance of considering interactions between physiological systems.
Collapse
Affiliation(s)
| | | | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Plácido E, Gomes Welter P, Wink A, Karasiak GD, Outeiro TF, Dafre AL, Gil-Mohapel J, Brocardo PS. Beyond Motor Deficits: Environmental Enrichment Mitigates Huntington's Disease Effects in YAC128 Mice. Int J Mol Sci 2023; 24:12607. [PMID: 37628801 PMCID: PMC10454852 DOI: 10.3390/ijms241612607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by motor, psychiatric, cognitive, and peripheral symptoms without effective therapy. Evidence suggests that lifestyle factors can modulate disease onset and progression, and environmental enrichment (EE) has emerged as a potential approach to mitigate the progression and severity of neurodegenerative processes. Wild-type (WT) and yeast artificial chromosome (YAC) 128 mice were exposed to different EE conditions. Animals from cohort 1 were exposed to EE between postnatal days 21 and 60, and animals from cohort 2 were exposed to EE between postnatal days 60 and 120. Motor and non-motor behavioral tests were employed to evaluate the effects of EE on HD progression. Monoamine levels, hippocampal cell proliferation, neuronal differentiation, and dendritic arborization were also assessed. Here we show that EE had an antidepressant-like effect and slowed the progression of motor deficits in HD mice. It also reduced monoamine levels, which correlated with better motor performance, particularly in the striatum. EE also modulated neuronal differentiation in the YAC128 hippocampus. These results confirm that EE can impact behavior, hippocampal neuroplasticity, and monoamine levels in YAC128 mice, suggesting this could be a therapeutic strategy to modulate neuroplasticity deficits in HD. However, further research is needed to fully understand EE's mechanisms and long-term effects as an adjuvant therapy for this debilitating condition.
Collapse
Affiliation(s)
- Evelini Plácido
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil (A.W.); (A.L.D.)
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil (A.W.); (A.L.D.)
| | - Ana Wink
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil (A.W.); (A.L.D.)
| | - Gabriela Duarte Karasiak
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil;
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Max Planck Institute for Natural Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE1 7RU, UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 18147 Göttingen, Germany
| | - Alcir Luiz Dafre
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil (A.W.); (A.L.D.)
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil;
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia and Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil (A.W.); (A.L.D.)
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| |
Collapse
|
5
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
6
|
Cheng S, Xu J, Wang W, Wang R, Li H, Jiang Z, Liu D, Pan F. Inhibition of mGluR5 alters BDNF/TrkB and GLT-1 expression in the prefrontal cortex and hippocampus and ameliorates PTSD-like behavior in rats. Psychopharmacology (Berl) 2023; 240:837-851. [PMID: 36725696 DOI: 10.1007/s00213-023-06325-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
RATIONALE AND OBJECTIVE Post-traumatic stress disorder (PTSD) is a prevalent and debilitating psychiatric disorder. However, its specific etiological mechanism remains unclear. Previous studies have shown that traumatic stress changes metabotropic glutamate receptor 5 (mGluR5) expression in the hippocampus (HIP) and prefrontal cortex (PFC). More importantly, mGluR5 expression is often accompanied by alterations in brain-derived neurotrophic factor (BDNF). Furthermore, BDNF/tropomyosin-associated kinase B (TrkB) signaling plays multiple roles, including roles in neuroplasticity and antidepressant activity, by regulating glutamate transporter-1 (GLT-1) expression. This study aims to explore the effects of inhibiting mGluR5 on PTSD-like behaviors and BDNF, TrkB, and GLT-1 expression in the HIP and PFC of inevitable foot shock (IFS)-treated rats. METHODS Seven-day IFS was used to establish a PTSD rat model, and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) (10 mg/kg, intraperitoneal injection) was used to inhibit the activity of mGluR5 during IFS in rats. After modeling, behavioral changes and mGluR5, BDNF, TrkB, and GLT-1 expression in the PFC and HIP were examined. RESULTS First, the IFS procedure induced PTSD-like behavior. Second, IFS increased the expression of mGluR5 and decreased BDNF, TrkB, and GLT-1 expression in the PFC and HIP. Third, the mGluR5 antagonist blocked the above behavioral and molecular alterations. CONCLUSIONS mGluR5 was involved in IFS-induced PTSD-like behavior by changing BDNF, TrkB, and GLT-1 expression.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jingjing Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
7
|
Vitamin C Modes of Action in Calcium-Involved Signaling in the Brain. Antioxidants (Basel) 2023; 12:antiox12020231. [PMID: 36829790 PMCID: PMC9952025 DOI: 10.3390/antiox12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Vitamin C (ascorbic acid) is well known for its potent antioxidant properties, as it can neutralize ROS and free radicals, thereby protecting cellular elements from oxidative stress. It predominantly exists as an ascorbate anion and after oxidation to dehydroascorbic acid and further breakdown, is removed from the cells. In nervous tissue, a progressive decrease in vitamin C level or its prolonged deficiency have been associated with an increased risk of disturbances in neurotransmission, leading to dysregulation in brain function. Therefore, understanding the regulatory function of vitamin C in antioxidant defence and identification of its molecular targets deserves more attention. One of the key signalling ions is calcium and a transient rise in its concentration is crucial for all neuronal processes. Extracellular Ca2+ influx (through specific ion channels) or Ca2+ release from intracellular stores (endoplasmic reticulum, mitochondria) are precisely controlled. Ca2+ regulates the functioning of the CNS, including growth, development, myelin formation, synthesis of catecholamines, modulation of neurotransmission and antioxidant protection. A growing body of evidence indicates a unique role for vitamin C in these processes. In this short review, we focus on vitamin C in the regulation of calcium-involved pathways under physiological and stress conditions in the brain.
Collapse
|
8
|
From antioxidant to neuromodulator: The role of ascorbate in the management of major depression disorder. Biochem Pharmacol 2022; 206:115300. [DOI: 10.1016/j.bcp.2022.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
|
9
|
Guanosine as a promising target for fast-acting antidepressant responses. Pharmacol Biochem Behav 2022; 218:173422. [PMID: 35732211 DOI: 10.1016/j.pbb.2022.173422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies. Here, we review the recent findings regarding the ability of guanosine to produce rapid-acting antidepressant-like effects and we provide an overview of the molecular mechanisms underlying its antidepressant-like actions. Moreover, the neurobiological mechanisms underpinning the ability of guanosine in boosting the antidepressant-like and pro-synaptogenic effects elicited by ketamine are also reported. Taken together, this review opens perspectives for the use of guanosine alone or in combination with ketamine for the management of treatment-resistant depression.
Collapse
|
10
|
Camargo A, Torrá ACNC, Dalmagro AP, Valverde AP, Kouba BR, Fraga DB, Alves EC, Rodrigues ALS. Prophylactic efficacy of ketamine, but not the low-trapping NMDA receptor antagonist AZD6765, against stress-induced maladaptive behavior and 4E-BP1-related synaptic protein synthesis impairment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110509. [PMID: 35033626 DOI: 10.1016/j.pnpbp.2022.110509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 01/04/2023]
Abstract
Ketamine enhances the resilience against stress-induced depressive-like behavior, but its prophylactic efficacy in anxiety-related behaviors remains to be elucidated. Moreover, there is a need for developing novel preventive strategies against depressive- and anxiety-like behavior. AZD6765, a low-trapping NMDA receptor antagonist, shares with ketamine common molecular targets and produces rapid-onset antidepressant effects, suggesting that it could be a prophylactic agent. Therefore, this study investigated the prophylactic effect of ketamine against the depressive- and anxiety-like behavior induced by chronic restraint stress (2 h/day, for 10 days) in mice. We also investigated if AZD6765 exerts a resilience-enhancing response against these maladaptive behaviors. The contribution of 4E-BP1-related synaptic proteins synthesis (PSD-95/GluA1) in the possible pro-resilience efficacy of ketamine and AZD6765 was investigated. A single administration of ketamine (5 mg/kg, i.p.), but not AZD6765 (1 or 5 mg/kg, i.p.), given 1 week before the stress protocol, was effective in preventing stress-induced depressive-like behavior in the tail suspension test and splash test. Ketamine administered at 1 and 5 mg/kg (i.p.), but not AZD6765 (1 or 5 mg/kg, i.p.), prevented stress-induced anxiety-related self-grooming alterations. Stress-induced reduction on 4E-BP1 phosphorylation and PSD-95 and GluA1 immunocontent in the prefrontal cortex was prevented by ketamine (5 mg/kg, i.p.), but not AZD6765 (1 or 5 mg/kg, i.p.). The results indicate that ketamine, but not AZD6765, exerts a pro-resilience response against stress-induced maladaptive behavior, reinforcing that it could be a prophylactic agent to manage individuals at-risk to develop MDD and anxiety.
Collapse
Affiliation(s)
- Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ana Clara N C Torrá
- Department of Biochemistry, Center of Biological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ana Paula Dalmagro
- Department of Natural Sciences, Center of Natural and Exact Sciences, Department of Natural Sciences, Regional University of Blumenau, Blumenau, SC, Brazil
| | - Ana Paula Valverde
- Department of Biochemistry, Center of Biological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Eloise C Alves
- Department of Biochemistry, Center of Biological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
11
|
Camargo A, Dalmagro AP, Delanogare E, Fraga DB, Wolin IAV, Zeni ALB, Brocardo PS, Rodrigues ALS. Guanosine boosts the fast, but not sustained, antidepressant-like and pro-synaptogenic effects of ketamine by stimulating mTORC1-driven signaling pathway. Eur Neuropsychopharmacol 2022; 57:15-29. [PMID: 35008015 DOI: 10.1016/j.euroneuro.2021.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022]
Abstract
The mTORC1-dependent dendritic spines formation represents a key mechanism for fast and long-lasting antidepressant responses, but it remains to be determined whether this mechanism may account for the ability of guanosine in potentiating ketamine's actions. Here, we investigated the ability of ketamine plus guanosine to elicit fast and sustained antidepressant-like and pro-synaptogenic effects in mice and the role of mTORC1 signaling in these responses. The combined administration of subthreshold doses of ketamine (0.1 mg/kg, i.p.) and guanosine (0.01 mg/kg, p.o.) caused a fast (1 h - 24 h), but not long-lasting (7 days) reduction in the immobility time in the tail suspension test. This behavioral effect was paralleled by a rapid (started in 1 h) and transient (back to baseline in 24 h) increase on BDNF, p-Akt (Ser473), p-GSK-3β (Ser9), p-mTORC1 (Ser2448), p-p70S6K (Thr389) immunocontent in the hippocampus, but not in the prefrontal cortex. Conversely, ketamine plus guanosine increased PSD-95 and GluA1 immunocontent in the prefrontal cortex, but not the hippocampus after 1 h, whereas increased levels of these proteins in both brain structures were observed after 24 h, but these effects did not persist after 7 days. The combined administration of ketamine plus guanosine raised the dendritic spines density in the ventral hippocampal DG and prefrontal cortex after 24 h Rapamycin (0.2 nmol/site, i.c.v.) abrogated the antidepressant-like effect and pro-synaptogenic responses triggered by ketamine plus guanosine. These results indicate that guanosine may boost the antidepressant-like effect of ketamine for up to 24 h by a mTORC1-dependent mechanism.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Graduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Ana Paula Dalmagro
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, 89030-903 Blumenau, SC, Brazil
| | - Eslen Delanogare
- Neuroscience Graduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Daiane B Fraga
- Neuroscience Graduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Ana Lúcia B Zeni
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, 89030-903 Blumenau, SC, Brazil
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil; Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900 SC, Brazil
| | - Ana Lúcia S Rodrigues
- Neuroscience Graduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil.
| |
Collapse
|
12
|
Tao X, Wu S, Tang W, Li L, Huang L, Mo D, Liu C, Song T, Wang S, Wang J, He J. Alleviative effects of foraging exercise on depressive-like behaviors in chronic mild stress-induced ischemic rat model. Brain Inj 2022; 36:127-136. [PMID: 35138197 DOI: 10.1080/02699052.2022.2034949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Poststroke depression (PSD) is a common complication that seriously affects the functional recovery and prognosis of an individual. As some patients with PSD fail to respond to drug therapy, it is urgent to find a viable alternative treatment. METHODS An active exercise program known as foraging exercise (FE), using food as bait, was designed. First, focal ischemia and chronic unpredictable mild stress (CUMS) were used to establish a PSD model in rats. FE was then performed for 4 weeks. Body weight and behavioral assessments were conducted at the end of the 4th and 8th weeks. RESULTS After 8 weeks, the results revealed that, compared with the PSD group, the behavioral scores of the rats in the PSD/FE group were significantly improved, the expression of Iba-1 in the affected frontal lobe and striatum was decreased, and serum levels of IL-6 and the IL-6/IL-10 ratio were downregulated. However, the ratio of residual brain volume in rats that had experienced CUMS was significantly less than that in the stroke group. CONCLUSION FE can alleviate the behavioral scores of PSD rats, and its mechanism may be related to a modulation of the immune-inflammation response of microglia. Furthermore, chronic, persistent stress may increase the volume of cerebral infarction after stroke.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Siyuan Wu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Wenjing Tang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Lu Li
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Lijun Huang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Shuling Wang
- Hunan Provincial Institute of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Juan He
- Department of Neurosurgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
13
|
Camargo A, Dalmagro AP, Wolin IAV, Siteneski A, Zeni ALB, Rodrigues ALS. A low-dose combination of ketamine and guanosine counteracts corticosterone-induced depressive-like behavior and hippocampal synaptic impairments via mTORC1 signaling. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110371. [PMID: 34089815 DOI: 10.1016/j.pnpbp.2021.110371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023]
Abstract
Ketamine exhibits rapid and sustained antidepressant responses, but its repeated use may cause adverse effects. Augmentation strategies have been postulated to be useful for the management/reduction of ketamine's dose and its adverse effects. Based on the studies that have suggested that ketamine and guanosine may share overlapping mechanisms of action, the present study investigated the antidepressant-like effect of subthreshold doses of ketamine and guanosine in mice subjected to repeated administration of corticosterone (CORT) and the role of mTORC1 signaling for this effect. The ability of the treatment with ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.) to counteract the depressive-like behavior induced by CORT (20 mg/kg, p.o., for 21 days) in mice, was paralleled with the prevention of the CORT-induced reduction on BDNF levels, Akt (Ser473) and GSK-3β (Ser9) phosphorylation, and PSD-95, GluA1, and synapsin immunocontent in the hippocampus. No changes on mTORC1 and p70S6K immunocontent were found in the hippocampus and prefrontal cortex of any experimental group. No alterations on BDNF, Akt/GSK-3β, mTORC1/p70S6K, and synaptic proteins were observed in the prefrontal cortex of mice. The antidepressant-like and pro-synaptogenic effects elicited by ketamine plus guanosine were abolished by the pretreatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTORC1 inhibitor). Our results showed that the combined administration of ketamine and guanosine at low doses counteracted CORT-induced depressive-like behavior and synaptogenic disturbances by activating mTORC1 signaling. This study supports the notion that the combined administration of guanosine and ketamine may be a useful therapeutic strategy for the management of MDD.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Paula Dalmagro
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, 89030-903, Blumenau, SC, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Aline Siteneski
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia B Zeni
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, 89030-903, Blumenau, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
14
|
Fraga DB, Camargo A, Olescowicz G, Padilha DA, Mina F, Budni J, Brocardo PS, Rodrigues ALS. Ketamine, but not fluoxetine, rapidly rescues corticosterone-induced impairments on glucocorticoid receptor and dendritic branching in the hippocampus of mice. Metab Brain Dis 2021; 36:2223-2233. [PMID: 33950381 DOI: 10.1007/s11011-021-00743-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Although numerous studies have investigated the mechanisms underlying the fast and sustained antidepressant-like effects of ketamine, the contribution of the glucocorticoid receptor (GR) and dendritic branching remodeling to its responses remain to be fully established. This study investigated the ability of a single administration of ketamine to modulate the GR and dendritic branching remodeling and complexity in the hippocampus of mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ketamine (1 mg ∕kg, i.p.) or fluoxetine (10 mg ∕kg, p.o., conventional antidepressant) in mice. On 22nd, 24 h after the treatments, GR immunocontent in the hippocampus was analyzed by western blotting, while the dendritic arborization and dendrite length in the ventral and dorsal dentate gyrus (DG) of the hippocampus was analyzed by Sholl analysis. Chronic CORT administration downregulated hippocampal GR immunocontent, but this alteration was completely reversed by a single administration of ketamine, but not fluoxetine. Moreover, CORT administration significantly decreased dendritic branching in the dorsal and ventral DG areas and caused a mild decrease in dendrite length in both regions. Ketamine, but not fluoxetine, reversed CORT-induced dendritic branching loss in the ventral and dorsal DG areas, regions associated with mood regulation and cognitive functions, respectively. This study provides novel evidence that a single administration of ketamine, but not fluoxetine, rescued the impairments on GR and dendritic branching in the hippocampus of mice subjected to chronic CORT administration, effects that may be associated with its rapid antidepressant response.
Collapse
Affiliation(s)
- Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Dayane Azevedo Padilha
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
15
|
Valverde AP, Camargo A, Rodrigues ALS. Agmatine as a novel candidate for rapid-onset antidepressant response. World J Psychiatry 2021; 11:981-996. [PMID: 34888168 PMCID: PMC8613765 DOI: 10.5498/wjp.v11.i11.981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a disabling and highly prevalent mood disorder as well as a common cause of suicide. Chronic stress, inflammation, and intestinal dysbiosis have all been shown to play crucial roles in the pathophysiology of MDD. Although conventional antidepressants are widely used in the clinic, they can take weeks to months to produce therapeutic effects. The discovery that ketamine promotes fast and sustaining antidepressant responses is one of the most important breakthroughs in the pharmacotherapy of MDD. However, the adverse psychomimetic/dissociative and neurotoxic effects of ketamine discourage its chronic use. Therefore, agmatine, an endogenous glutamatergic modulator, has been postulated to elicit fast behavioral and synaptogenic effects by stimulating the mechanistic target of rapamycin complex 1 signaling pathway, similar to ketamine. However, recent evidence has demonstrated that the modulation of the NLR family pyrin domain containing 3 inflammasome and gut microbiota, which have been shown to play a crucial role in the pathophysiology of MDD, may also participate in the antidepressant-like effects of both ketamine and agmatine. This review seeks to provide evidence about the mechanisms that may underlie the fast antidepressant-like responses of agmatine in preclinical studies. Considering the anti-inflammatory properties of agmatine, it may also be further investigated as a useful compound for the management of MDD associated with a pro-inflammatory state. Moreover, the fast antidepressant-like response of agmatine noted in animal models should be investigated in clinical studies.
Collapse
Affiliation(s)
- Ana Paula Valverde
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| |
Collapse
|
16
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. J Psychopharmacol 2021; 35:1253-1264. [PMID: 34617804 PMCID: PMC8521380 DOI: 10.1177/02698811211048281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is extensive evidence that antidepressant drugs restore normal brain function by repairing damage to ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC). While the damage is more extensive in hippocampus, the evidence of treatments, such as deep brain stimulation, suggests that functional changes in prefrontal cortex may be more critical. We hypothesized that antidepressant non-response may result from an insufficiency of transmission from vHPC to mPFC. METHOD Antidepressant non-responsive Wistar Kyoto (WKY) rats were subjected to chronic mild stress (CMS), then treated with chronic daily administration of the antidepressant drug venlafaxine (VEN) and/or repeated weekly optogenetic stimulation (OGS) of afferents to mPFC originating from vHPC or dorsal HPC (dHPC). RESULTS As in many previous studies, CMS decreased sucrose intake, open-arm entries on the elevated plus maze (EPM), and novel object recognition (NOR). Neither VEN nor vHPC-mPFC OGS alone was effective in reversing the effects of CMS, but the combination of chronic VEN and repeated OGS restored normal behaviour on all three measures. dHPC-mPFC OGS restored normal behaviour in the EPM and NOR test irrespective of concomitant VEN treatment, and had no effect on sucrose intake. CONCLUSIONS The synergism between VEN and vHPC-mPFC OGS supports the hypothesis that the antidepressant non-responsiveness of WKY rats results from a failure of antidepressant treatment fully to restore transmission in the vHPC-mPFC pathway.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
17
|
Moretti M, Rodrigues ALS. Functional role of ascorbic acid in the central nervous system: a focus on neurogenic and synaptogenic processes. Nutr Neurosci 2021; 25:2431-2441. [PMID: 34493165 DOI: 10.1080/1028415x.2021.1956848] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ascorbic acid, a water-soluble vitamin, is highly concentrated in the brain and participates in neuronal modulation and regulation of central nervous system (CNS) homeostasis. Ascorbic acid has emerged as a neuroprotective compound against neurotoxicants and neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis and amyotrophic lateral sclerosis. Moreover, it improves behavioral and biochemical alterations in psychiatric disorders, including schizophrenia, anxiety, major depressive disorder, and bipolar disorder. Some recent studies have advanced the knowledge on the mechanisms associated with the preventive and therapeutic effects of ascorbic acid by showing that they are linked to improved neurogenesis and synaptic plasticity. This review shows that ascorbic acid has the potential to regulate positively stem cell generation and proliferation. Moreover, it improves neuronal differentiation of precursors cells, promotes adult hippocampal neurogenesis, and has synaptogenic effects that are possibly linked to its protective or therapeutic effects in the brain.
Collapse
Affiliation(s)
- Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
18
|
Camargo A, Dalmagro AP, Fraga DB, Rosa JM, Zeni ALB, Kaster MP, Rodrigues ALS. Low doses of ketamine and guanosine abrogate corticosterone-induced anxiety-related behavior, but not disturbances in the hippocampal NLRP3 inflammasome pathway. Psychopharmacology (Berl) 2021; 238:2555-2568. [PMID: 34342672 DOI: 10.1007/s00213-021-05879-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Guanosine has been shown to potentiate ketamine's antidepressant-like actions, although its ability to augment the anxiolytic effect of ketamine remains to be determined. OBJECTIVE This study investigated the anxiolytic-like effects of a single administration with low doses of ketamine and/or guanosine in mice subjected to chronic administration of corticosterone and the role of NLRP3-driven signaling. METHODS Corticosterone (20 mg/kg, p.o.) was administered for 21 days, followed by a single administration of ketamine (0.1 mg/kg, i.p.), guanosine (0.01 mg/kg, p.o.), or ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.). Anxiety-like behavior and NLRP3-related targets were analyzed 24 h following treatments. RESULTS Corticosterone reduced the time spent in the open arms and the central zone in the elevated plus-maze test and open-field test, respectively. Corticosterone raised the number of unsupported rearings and the number and time of grooming, and decreased the latency to start grooming in the open-field test. Disturbances in regional distribution (increased rostral grooming) and grooming transitions (increased aborted and total incorrect transitions) were detected in corticosterone-treated mice. These behavioral alterations were accompanied by increased immunocontent of Iba-1, ASC, NLRP3, caspase-1, TXNIP, and IL-1β in the hippocampus, but not in the prefrontal cortex. The treatments with ketamine, guanosine, and ketamine plus guanosine were effective to counteract corticosterone-induced anxiety-like phenotype, but not disturbances in the hippocampal NLRP3 pathway. CONCLUSIONS Our study provides novel evidence that low doses of ketamine and/or guanosine reverse corticosterone-induced anxiety-like behavior and shows that the NLRP3 inflammasome pathway is likely unrelated to this response.
Collapse
Affiliation(s)
- Anderson Camargo
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Paula Dalmagro
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, Blumenau, Santa Catarina, 89030-903, Brazil
| | - Daiane B Fraga
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia B Zeni
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, Blumenau, Santa Catarina, 89030-903, Brazil
| | - Manuella P Kaster
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil. .,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
19
|
Rosa PB, Bettio LEB, Neis VB, Moretti M, Kaufmann FN, Tavares MK, Werle I, Dalsenter Y, Platt N, Rosado AF, Fraga DB, Heinrich IA, Freitas AE, Leal RB, Rodrigues ALS. Antidepressant-like effect of guanosine involves activation of AMPA receptor and BDNF/TrkB signaling. Purinergic Signal 2021; 17:285-301. [PMID: 33712981 PMCID: PMC8155134 DOI: 10.1007/s11302-021-09779-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).
Collapse
Affiliation(s)
- Priscila B. Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Luis E. B. Bettio
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil ,Division of Medical Sciences, University of Victoria, Victoria, BC Canada
| | - Vivian B. Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Fernanda N. Kaufmann
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Mauren K. Tavares
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Isabel Werle
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Yasmim Dalsenter
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Nicolle Platt
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Axel F. Rosado
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Daiane B. Fraga
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Isabella A. Heinrich
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Andiara E. Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Rodrigo B. Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| |
Collapse
|
20
|
Fraga DB, Camargo A, Olescowicz G, Azevedo Padilha D, Mina F, Budni J, Brocardo PS, Rodrigues ALS. A single administration of ascorbic acid rapidly reverses depressive-like behavior and hippocampal synaptic dysfunction induced by corticosterone in mice. Chem Biol Interact 2021; 342:109476. [PMID: 33872575 DOI: 10.1016/j.cbi.2021.109476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
Ketamine is the prototype for glutamate-based fast-acting antidepressants. The establishment of ketamine-like drugs is still a challenge and ascorbic acid has emerged as a candidate. This study investigated the ascorbic acid's ability to induce a fast antidepressant-like response and to improve hippocampal synaptic markers in mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ascorbic acid (1 mg ∕Kg, p.o.), ketamine (1 mg ∕Kg, i.p.) or fluoxetine (10 mg ∕Kg, p.o.) in mice. Depressive-like behavior, hippocampal synaptic proteins immunocontent, dendrite spines density in the dentate gyrus (DG) were analyzed 24 h following treatments. The administration of ascorbic acid or ketamine, but not fluoxetine, counteracted CORT-induced depressive-like behavior in the tail suspension test (TST). CORT administration reduced PSD-95, GluA1, and synapsin (synaptic markers) immunocontent, and these alterations were reversed by ascorbic acid or ketamine, but only ketamine reversed the CORT-induced reduction on GluA1 immunocontent. In the ventral and dorsal DG, CORT decreased filopodia-, thin- and stubby-shaped spines, while ascorbic acid and ketamine abolished this alteration only in filopodia spines. Ascorbic acid and ketamine increased mushroom-shaped spines density in ventral and dorsal DG. Therefore, the results show that a single administration of ascorbic acid, in a way similar to ketamine, rapidly elicits an antidepressant-like response and reverses hippocampal synaptic deficits caused by CORT, an effect associated with increased levels of synaptic proteins and dendritic remodeling.
Collapse
Affiliation(s)
- Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Dayane Azevedo Padilha
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
21
|
Almeida RF, Ferreira TP, David CVC, Abreu E Silva PC, Dos Santos SA, Rodrigues ALS, Elisabetsky E. Guanine-Based Purines as an Innovative Target to Treat Major Depressive Disorder. Front Pharmacol 2021; 12:652130. [PMID: 33927625 PMCID: PMC8076783 DOI: 10.3389/fphar.2021.652130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Roberto F Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.,Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago P Ferreira
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Camila V C David
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Paulo C Abreu E Silva
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sulamita A Dos Santos
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana L S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elaine Elisabetsky
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Cholewinski T, Pereira D, Moerland M, Jacobs GE. MTORC1 signaling as a biomarker in major depressive disorder and its pharmacological modulation by novel rapid-acting antidepressants. Ther Adv Psychopharmacol 2021; 11:20451253211036814. [PMID: 34733478 PMCID: PMC8558816 DOI: 10.1177/20451253211036814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial psychiatric disorder with obscure pathophysiology. A biomarker-based approach in combination with standardized interview-based instruments is needed to identify MDD subtypes and novel therapeutic targets. Recent findings support the impairment of the mammalian target of rapamycin complex 1 (mTORC1) in MDD. No well-established biomarkers of mTORC1 disease- and treatment-modulated activity are currently available for use in early phase antidepressant drug (AD) development. This review aims to summarize biomarkers of mTORC1 activity in MDD and to suggest how these could be implemented in future early clinical trials on mTORC1 modulating ADs. Therefore, a PubMed-based narrative literature review of the mTORC1 involvement in MDD was performed. We have summarized recent pre-clinical and clinical findings linking the MDD to the impaired activity of several key biomarkers related to mTORC1. Also, cases of restoration of these impairments by classical ADs and novel fast-acting investigational ADs are summarized. The presented biomarkers may be used to monitor pharmacological effects by novel rapid-acting mTORC1-targeting ADs. Based on findings in the peripheral blood mononuclear cells, we argue that those may serve as an ex vivo model for evaluation of mTORC1 activity and propose the use of the summarized biomarkers for this purpose. This could both facilitate the selection of a pharmacodynamically active dose and guide future early clinical efficacy studies in MDD. In conclusion, this review provides a blueprint for the rational development of rapid-acting mTORC1-targeting ADs.
Collapse
Affiliation(s)
| | - Diana Pereira
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Gabriel E Jacobs
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| |
Collapse
|
23
|
(Ascorb)ing Pb Neurotoxicity in the Developing Brain. Antioxidants (Basel) 2020; 9:antiox9121311. [PMID: 33371438 PMCID: PMC7767447 DOI: 10.3390/antiox9121311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Lead (Pb) neurotoxicity is a major concern, particularly in children. Developmental exposure to Pb can alter neurodevelopmental trajectory and has permanent neuropathological consequences, including an increased vulnerability to further stressors. Ascorbic acid is among most researched antioxidant nutrients and has a special role in maintaining redox homeostasis in physiological and physio-pathological brain states. Furthermore, because of its capacity to chelate metal ions, ascorbic acid may particularly serve as a potent therapeutic agent in Pb poisoning. The present review first discusses the major consequences of Pb exposure in children and then proceeds to present evidence from human and animal studies for ascorbic acid as an efficient ameliorative supplemental nutrient in Pb poisoning, with a particular focus on developmental Pb neurotoxicity. In doing so, it is hoped that there is a revitalization for further research on understanding the brain functions of this essential, safe, and readily available vitamin in physiological states, as well to justify and establish it as an effective neuroprotective and modulatory factor in the pathologies of the nervous system, including developmental neuropathologies.
Collapse
|
24
|
Gruhn K, Siteneski A, Camargo A, Freitas AE, Olescowicz G, Brocardo PS, Rodrigues ALS. Physical exercise stimulates hippocampal mTORC1 and FNDC5/irisin signaling pathway in mice: Possible implication for its antidepressant effect. Behav Brain Res 2020; 400:113040. [PMID: 33279634 DOI: 10.1016/j.bbr.2020.113040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have consistently indicated that physical exercise has antidepressant effects by improving hippocampal function, although the signaling pathways underpinning these responses are not well established. Therefore, this study investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and fibronectin type III domain-containing protein 5 (FNDC5)/irisin signaling in the antidepressant-like effect of physical exercise. We showed that physical exercise (treadmill running - 45 min/day/5 days/week for 4 weeks) produced an antidepressant-like effect as indicated by a reduction on the immobility time in mice subjected to the forced swimming test (FST) without altering locomotor activity in the open field test (OFT). Rapamycin (a selective mTORC1 inhibitor, 0.2 nmol/site, i.c.v.) administration completely abolished the antidepressant-like effect of physical exercise in the FST, suggesting that mTORC1 activation plays a role for its behavioral effect. Accordingly, physical exercise increased the number of phosphorylated mTORC1 (Ser2448)-positive cells in the entire and ventral subgranular zone of the hippocampal dentate gyrus. Physical exercise was also effective in augmenting the hippocampal FNDC5/irisin immunocontent, but rapamycin administration did not alter this effect. Our results reinforce the notion that physical exercise exerts an antidepressant-like effect and identifies the mTORC1-mediated signaling pathway as a target for its behavioral effects. This study provides additional evidence that physical exercise increases hippocampal FNDC5/irisin immunocontent, but this effect seems to be independent on hippocampal mTORC1 activation. Altogether the results contribute to elucidate possible molecular targets implicated in the antidepressant effects of physical exercise and highlight the role of mTORC1 signaling for its behavioral response.
Collapse
Affiliation(s)
- Karen Gruhn
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Aline Siteneski
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil; Institute of Investigation, Faculty of Health Sciences, Technical University of Manabí, 130103, Portoviejo, Manabí, Ecuador
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
25
|
Pazini FL, Rosa JM, Camargo A, Fraga DB, Moretti M, Siteneski A, Rodrigues ALS. mTORC1-dependent signaling pathway underlies the rapid effect of creatine and ketamine in the novelty-suppressed feeding test. Chem Biol Interact 2020; 332:109281. [DOI: 10.1016/j.cbi.2020.109281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 09/29/2020] [Indexed: 01/11/2023]
|
26
|
Neis VB, Moretti M, Rosa PB, Dalsenter YDO, Werle I, Platt N, Kaufmann FN, Rosado AF, Besen MH, Rodrigues ALS. The involvement of PI3K/Akt/mTOR/GSK3β signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav 2020; 198:173020. [DOI: 10.1016/j.pbb.2020.173020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
|