1
|
Mao Y, Fan L, Feng C, Dai Z. Predicting responses of neuromodulation and psychotherapies for major depressive disorder: A coordinate-based meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2025; 172:106120. [PMID: 40122358 DOI: 10.1016/j.neubiorev.2025.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/29/2024] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
This meta-analysis synthesized resting-state functional connectivity (FC) patterns associated with treatment responses in Major Depressive Disorder (MDD). We evaluated studies from 2013 to 2023 that reported pre-treatment FC (i.e., 'biomarker' analysis) and/or treatment-induced FC alterations (i.e., 'longitudinal effects') in three treatments (i.e., transcranial magnetic stimulation, electroconvulsive therapy, psychotherapy), and further associated these patterns with gene expression, neurotransmitter distributions, and symptomatology. From 57 studies covering 1726 patients, the 'biomarker' results revealed significant rs-FC patterns in the Default Mode Network (DMN) and Frontoparietal Network (FPN). 'Longitudinal effects' were characterized by altered DMN connectivity. Psychotherapy primarily affected the visual network and DMN. Gene expression profiles explained 38.5 % and 56.0 % of the variance in 'biomarker' and 'longitudinal' results, respectively. The meta-analysis correlated with neurotransmitter distributions (e.g., serotonin, dopamine) and MDD-related terms ('interaction', 'emotional', 'negative'). These findings indicate that baseline FC within the DMN and FPN is crucial for predicting treatment responses, and the core mechanisms may involve restoring the DMN. This work may enhance our understanding of MDD pathophysiology and help guide personalized interventions.
Collapse
Affiliation(s)
- Yunlin Mao
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linlin Fan
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau SAR, China
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, China.
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Laroy M, Emsell L, Vandenbulcke M, Bouckaert F. Mapping electroconvulsive therapy induced neuroplasticity: Towards a multilevel understanding of the available clinical literature - A scoping review. Neurosci Biobehav Rev 2025; 173:106143. [PMID: 40222573 DOI: 10.1016/j.neubiorev.2025.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Since its introduction in 1938, the precise mechanism underlying the efficacy of electroconvulsive therapy (ECT) in treating severe psychiatric disorders remains elusive. This paper presents a comprehensive scoping review aimed to collate and summarize findings from clinical studies on neuroplastic changes induced by ECT. The review categorizes neuroplasticity into molecular, structural, and functional domains, offering a multilevel view of current research and its limitations. Molecular findings detail the varied responses of neurotrophic factors and neurotransmitters post-ECT, highlighting inconsistent evidence on their clinical relevance. Structural neuroplasticity is explored through changes in brain volume, cortical thickness, and white matter properties, presenting ECT as a potent stimulator of brain architecture alterations. Functional plasticity examines ECT's impact on brain function through diverse neuroimaging techniques, suggesting significant yet complex modifications in brain network connectivity and activity. The review emphasizes the multilevel nature of these neuroplasticity levels and their collective role in ECT's therapeutic outcomes. Methodological considerations-including sample size, patient heterogeneity, and variability in assessment timing-emerge as recurring themes in the literature, underscoring the need for more consistent and rigorous research designs. By outlining a cohesive framework of changes in neuroplasticity due to ECT, this review provides initial steps towards a deeper comprehension of ECT's mechanisms.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium.
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, Leuven B-3000, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
3
|
Brancati GE, Medda P, Perugi G. The effectiveness of electroconvulsive therapy (ECT) for people with bipolar disorder: is there a specific role? Expert Rev Neurother 2025; 25:381-388. [PMID: 40007434 DOI: 10.1080/14737175.2025.2470979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Electroconvulsive therapy (ECT) has been used for over 80 years to treat various neuropsychiatric conditions, including mood and psychotic disorders. Despite its proven efficacy, ECT remains underutilized and underexplored in patients with bipolar disorder (BD). AREAS COVERED This perspective examines the role of ECT in BD, highlighting its effectiveness across depressive, manic, and mixed phases, including those characterized by catatonic or delirious features. Based on these findings, the authors propose a comprehensive transdiagnostic framework to conceptualize ECT-responsive syndromes based on psychomotor, psychotic, and cognitive disturbances. The potential long-term effectiveness of ECT as a mood stabilizer is also suggested, despite the limited amount of literature. Finally, safety issues and alternative options are discussed. EXPERT OPINION The shift in ECT usage, from being a first-line treatment for severe affective episodes to a 'last-resort' option for treatment-resistant depression, may have contributed to increased relapse rates and chronicity. Considering ECT at an early stage, potentially even before any medication trials, is recommended for specific clinical conditions associated with BD and marked by objective psychomotor disturbances, acute psychotic symptoms, and severe cognitive alterations.
Collapse
Affiliation(s)
- Giulio Emilio Brancati
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Pierpaolo Medda
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Giulio Perugi
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Dellink A, Vanderhaegen G, Coppens V, Ryan KM, McLoughlin DM, Kruse J, van Exel E, van Diermen L, Belge JB, Aarsland TIM, Morrens M. Inflammatory markers associated with electroconvulsive therapy response in patients with depression: A meta-analysis. Neurosci Biobehav Rev 2025; 170:106060. [PMID: 39938607 DOI: 10.1016/j.neubiorev.2025.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Electroconvulsive therapy (ECT) is an effective intervention for severe unipolar and bipolar depression, yet its drawbacks often lead to its underutilization. Accurate prediction of ECT outcomes is crucial for optimizing patient care and increasing remission rates. This study synthesized existing evidence on the relationship between baseline inflammatory markers and ECT outcomes. Additionally, we explored whether changes in these markers during ECT correlated with symptom improvement. A correlation meta-analysis was conducted according to the PRISMA statement, including a total of fourteen studies (n = 556 patients). The analyses revealed that higher baseline CRP and IL-6 levels were significantly associated with greater depressive symptom reduction post-ECT. Additionally, our findings suggested that increases in kynurenine metabolites and IL-8 during treatment correlated with improved depressive symptoms, offering insights into the mechanistic aspects of depression and ECT. In conclusion, peripheral inflammation in depression, as measured by CRP and IL-6, is associated with better ECT outcomes and may guide treatment stratification. Further research on a broader range of cytokines and kynurenine metabolites is needed to confirm these findings.
Collapse
Affiliation(s)
- Annelies Dellink
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gertjan Vanderhaegen
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Violette Coppens
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Kruse
- The Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA and the Department of Psychiatry & Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Eric van Exel
- Department of Psychiatry, Amsterdam UMC, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Linda van Diermen
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Zoersel, Belgium
| | - Jean-Baptiste Belge
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Manuel Morrens
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Laroy M, Van Laere K, Vandenbulcke M, Emsell L, Bouckaert F. Molecular Positron Emission Tomography and Single-Photon Emission Computed Tomography Imaging for Understanding the Neurobiological Mechanisms of Electroconvulsive Therapy: A Scoping Review. J ECT 2024:00124509-990000000-00238. [PMID: 39714318 DOI: 10.1097/yct.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
ABSTRACT Electroconvulsive therapy (ECT) effectively treats severe psychiatric disorders such as depression, mania, catatonia, and schizophrenia. Although its exact mechanism remains unclear, ECT is thought to induce neurochemical and neuroendocrine changes. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have provided vital insights into ECT's neurobiological effects. This scoping review investigates the role of molecular imaging in understanding these effects. A systematic search across PubMed, EMBASE, Web of Science, Cochrane, and Scopus databases yielded 857 unique records, from which 45 peer-reviewed articles in English with longitudinal PET or SPECT measures in ECT patients were included. The review identifies 2 main research directions: ECT's impact on brain activity and neurotransmitters. Initial research assessed regional cerebral blood flow and regional glucose metabolism during ictal (during ECT), postictal (within 24 hours), short-term (within a week), and long-term (beyond a week) follow-up as markers of brain activity. Initial findings showed an anterior-posterior regional cerebral blood flow gradient during the ictal phase, with subsequent normalization of hypoperfusion in frontal and parietal regions, and persistent long-term effects. Later, research shifted to the monoamine hypothesis of depression, examining ECT's impact on serotonin and dopamine systems via PET imaging. Results on receptor availability post-ECT were mixed, showing both reductions and no significant changes, indicating variable effects. This scoping review further highlights the need to explore new targets, tailor methodologies for patient populations, and foster multicenter studies. Although SPECT has been valuable, advances in PET imaging now make it preferable, offering unparalleled insights into ECT's molecular and neurobiological mechanisms.
Collapse
Affiliation(s)
- Maarten Laroy
- From the Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
6
|
Dib M, Lewine JD, Abbott CC, Deng ZD. Electroconvulsive therapy modulates loudness dependence of auditory evoked potentials: a pilot MEG study. Front Psychiatry 2024; 15:1434434. [PMID: 39188521 PMCID: PMC11345267 DOI: 10.3389/fpsyt.2024.1434434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction Electroconvulsive therapy (ECT) remains a critical intervention for treatment-resistant depression (MDD), yet its neurobiological underpinnings are not fully understood. This pilot study aims to investigate changes in loudness dependence of auditory evoked potentials (LDAEP), a proposed biomarker of serotonergic activity, in patients undergoing ECT. Methods High-resolution magnetoencephalography (MEG) was utilized to measure LDAEP in nine depressed patients receiving right unilateral ECT. We hypothesized that ECT would reduce the LDAEP slope, reflecting enhanced serotonergic neurotransmission. Depression severity and cognitive performance were assessed using the 24-item Hamilton Depression Rating Scale (HDRS24) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), respectively. Results Contrary to our hypothesis, findings indicated a significant increase in LDAEP post-ECT (t 8 = 3.17, p = .013). The increase in LDAEP was not associated with changes in depression severity or cognitive performance. Discussion The observed increase in LDAEP suggests a more complex interaction between ECT and neurobiological systems, rather than a direct reflection of serotonergic neurotransmission. Potential mechanisms for this increase include ECT's impact on serotonergic, dopaminergic, glutamatergic, and GABAergic receptor activity, neuroplasticity involving brain-derived neurotrophic factor (BDNF), and inflammatory modulators such as TNF-α. Our results highlight the multifaceted effects of ECT on brain function, necessitating further research to elucidate these interactions.
Collapse
Affiliation(s)
- Michael Dib
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Jeffrey David Lewine
- The Mind Research Network, University of New Mexico, Albuquerque, NM, United States
| | - Christopher C. Abbott
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Laroy M, Bouckaert F, Ousdal OT, Dols A, Rhebergen D, van Exel E, van Wingen G, van Waarde J, Verdijk J, Kessler U, Bartsch H, Jorgensen MB, Paulson OB, Nordanskog P, Prudic J, Sienaert P, Vandenbulcke M, Oltedal L, Emsell L. Characterization of gray matter volume changes from one week to 6 months after termination of electroconvulsive therapy in depressed patients. Brain Stimul 2024; 17:876-886. [PMID: 39059711 DOI: 10.1016/j.brs.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Increased gray matter volume (GMV) following electroconvulsive therapy (ECT) has been well-documented, with limited studies reporting a subsequent decrease in GMV afterwards. OBJECTIVE This study characterized the reversion pattern of GMV after ECT and its association with clinical depression outcome, using multi-site triple time-point data from the Global ECT-MRI Research Collaboration (GEMRIC). METHODS 86 subjects from the GEMRIC database were included, and GMV in 84 regions-of-interest (ROI) was obtained from automatic segmentation of T1 MRI images at three timepoints: pre-ECT (T0), within one-week post-ECT (T1), and one to six months post-ECT (T2). RM-ANOVAs were used to assess longitudinal changes and LMM analyses explored associations between GMV changes and demographical and clinical characteristics. RESULTS 63 of the 84 ROIs showed a significant increase-and-decrease pattern (RM-ANOVA, Bonferroni corrected p < 0.00059). Post hoc tests indicated a consistent pattern in each of these 63 ROIs: significant increase from T0 to T1inGMV, followed by significant decrease from T1 to T2 and no difference between T0 and T2, except for both amygdalae, right hippocampus and pars triangularis, which showed the same increase and decrease but GMV at T2 remained higher compared to T0. No consistent relationship was found between GMV change pattern and clinical status. CONCLUSION The GEMRIC cohort confirmed a rapid increase of GMV after ECT followed by reversion of GMV one to six months thereafter. The lack of association between the GMV change pattern and depression outcome scores implies a transient neurobiological effect of ECT unrelated to clinical improvement.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium.
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht, Division Brain, Utrecht, the Netherlands; Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Didi Rhebergen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Mental Health Institute, GGZ Centraal, Amersfoort, the Netherlands
| | - Eric van Exel
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jeroen van Waarde
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joey Verdijk
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Martin Balslev Jorgensen
- Psychiatric Center Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Olaf B Paulson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Pia Nordanskog
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joan Prudic
- Department of Psychiatry, Columbia University Irving Medical Center, USA
| | - Pascal Sienaert
- KU Leuven, Department of Neurosciences, Academic Centre for ECT and Neuromodulation, B-3000, Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| |
Collapse
|
8
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
9
|
Dib M, Lewine JD, Abbott CC, Deng ZD. Electroconvulsive Therapy Modulates Loudness Dependence of Auditory Evoked Potentials: A Pilot MEG Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.26.24306462. [PMID: 38903065 PMCID: PMC11188126 DOI: 10.1101/2024.04.26.24306462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Electroconvulsive therapy (ECT) remains a critical intervention for treatment-resistant depression (MDD), yet its neurobiological underpinnings are not fully understood. This pilot study utilizes high-resolution magnetoencephalography (MEG) in nine depressed patients receiving right unilateral ECT, to investigate the changes in loudness dependence of auditory evoked potentials (LDAEP), a proposed biomarker of serotonergic activity, following ECT. We hypothesized that ECT would reduce the LDAEP slope, reflecting enhanced serotonergic neurotransmission. Contrary to this, our findings indicated a significant increase in LDAEP post-ECT ( t 8 = 3.17, p = .013). The increase in LDAEP was not associated with changes in depression severity or cognitive performance, as assessed by the Hamilton Depression Rating Scale (HAMD-24) and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). We discussed potential mechanisms for the observed increase, including ECT's impact on serotonergic, dopaminergic, glutamatergic, and GABAergic receptor activity, neuroplasticity involving brain-derived neurotrophic factor (BDNF), and inflammation modulators such as TNF- alpha . Our results suggest a complex interaction between ECT and these neurobiological systems, rather than a direct reflection of serotonergic neurotransmission.
Collapse
|