1
|
Promising Photocytotoxicity of Water-Soluble Phtalocyanine against Planktonic and Biofilm Pseudomonas aeruginosa Isolates from Lower Respiratory Tract and Chronic Wounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternative methods of killing microbes have been extensively researched in connection with the widespread appearance of antibiotic resistance among pathogenic bacteria. In this study, we report on in vitro antimicrobial phototoxicity research of cationic phthalocyanine with 2-(4-N-methylmorpholin-4-ium-4-yl)ethoxy substituents against selected clinical strains of Pseudomonas aeruginosa isolated from the lower respiratory tract and chronic wounds. The microorganisms tested in the research were analyzed in terms of drug resistance and biofilm formation. The photocytotoxic effect of phthalocyanine was determined by the reduction factor of bacteria. The studied cationic phthalocyanine at a concentration of 1.0 × 10−4 M, when activated by light, revealed a significant reduction factor, ranging from nearly 4 to 6 log, of P. aeruginosa cells when compared to the untreated control group. After single irradiation, a decrease in the number of bacteria in biofilm ranging from 1.3 to 4.2 log was observed, whereas the second treatment significantly improved the bacterial reduction factor from 3.4 to 5.5 log. It is worth mentioning that a boosted cell-death response was observed after the third irradiation, with a bacterial reduction factor ranging from 4.6 to 6.4 log. According to the obtained results, the tested photosensitizer can be considered as a potential antimicrobial photodynamic therapy against multidrug-resistant P. aeruginosa.
Collapse
|
2
|
Khezami K, Harmandar K, Bağda E, Bağda E, Şahin G, Karakodak N, Durmuş M. BSA/DNA binding behavior and the photophysicochemical properties of novel water soluble zinc(II)phthalocyanines directly substituted with piperazine groups. J Biol Inorg Chem 2021; 26:455-465. [PMID: 33944997 DOI: 10.1007/s00775-021-01868-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022]
Abstract
In the current research, two novel zinc(II) phthalocyanines (ZnPcs) (1 and 2) directly connecting with 4-(4-methylpiperazin-1-yl)phenyl groups have been synthesized through the Suzuki-Miyaura coupling reaction. These ZnPcs 1 and 2 were converted to their water-soluble derivatives (1Q and 2Q) by quaternization. The photochemical and photophysical properties were determined in DMSO for the non-ionic zinc(II) phthalocyanines (1 and 2) and in both DMSO and aqueous solutions for the quaternized cationic derivatives (1Q and 2Q) to establish their photosensitizer capabilities in photodynamic therapy (PDT). The spectrofluorometric and spectrophotometric techniques were employed for the determination of interaction between water-soluble ZnPcs (1Q and 2Q) and BSA or ct-DNA. The binding constants of these compounds to BSA were found in the order of 108 M-1. The binding constant of the ct-DNA interaction with 2Q (1.09 × 105 M-1) was found higher than 1Q (6.87 × 104 M-1). The thermodynamic constants were determined for both 1Q and 2Q. The endothermic and spontaneous nature of interaction was observed with ct-DNA. Besides, the thermal denaturation and viscosity studies proved the non-intercalative mode of binding for both compounds to ct-DNA.
Collapse
Affiliation(s)
- Khaoula Khezami
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.,Faculty of Science of Bizert, University of Carthage, Carthage, Tunisia
| | - Kevser Harmandar
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Efkan Bağda
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Gamze Şahin
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Nurşen Karakodak
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
3
|
Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N -methyl morpholiniumethoxy substituents in non-peripheral positions. J Inorg Biochem 2017; 172:67-79. [DOI: 10.1016/j.jinorgbio.2017.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/29/2022]
|
4
|
Cerqueira AFR, Almodôvar VAS, Neves MGPMS, Tomé AC. Coumarin-Tetrapyrrolic Macrocycle Conjugates: Synthesis and Applications. Molecules 2017; 22:E994. [PMID: 28617340 PMCID: PMC6152750 DOI: 10.3390/molecules22060994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
This review covers the synthesis of coumarin-porphyrin, coumarin-phthalocyanine and coumarin-corrole conjugates and their potential applications. While coumarin-phthalocyanine conjugates were obtained almost exclusively by tetramerization of coumarin-functionalized phthalonitriles, coumarin-porphyrin and coumarin-corrole conjugates were prepared by complementary approaches: (a) direct synthesis of the tetrapyrrolic macrocycle using formylcoumarins and pyrrole or (b) by functionalization of the tetrapyrrolic macrocycle. In the last approach a range of reaction types were used, namely 1,3-dipolar cycloadditions, hetero-Diels-Alder, Sonogashira, alkylation or acylation reactions. This is clearly a more versatile approach, leading to a larger diversity of conjugates and allowing the access to conjugates bearing one to up to 16 coumarin units.
Collapse
Affiliation(s)
- Ana F R Cerqueira
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vítor A S Almodôvar
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Augusto C Tomé
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, Wierzchowski M, Teubert A, Fedoruk-Wyszomirska A, Wyszko E, Gdaniec M, Kaczmarek M, Goslinski T, Mielcarek J, Murias M. Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem 2015; 58:2240-55. [PMID: 25700089 DOI: 10.1021/acs.jmedchem.5b00052] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three 2-(morpholin-4-yl)ethoxy substituted phthalocyanines were synthesized and characterized. Phthalocyanine derivatives revealed moderate to high quantum yields of singlet oxygen production depending on the solvent applied (e.g., in DMF ranging from 0.25 to 0.53). Their photosensitizing potential for photodynamic therapy was investigated in an in vitro model using cancer cell lines. Biological test results were found particularly encouraging for the zinc(II) phthalocyanine derivative possessing two 2-(morpholin-4-yl)ethoxy substituents in nonperipheral positions. Cells irradiated for 20 min at 2 mW/cm(2) revealed the lowest IC50 value at 0.25 μM for prostate cell line (PC3), whereas 1.47 μM was observed for human malignant melanoma (A375) cells. The cytotoxic activity in nonirradiated cells of novel phthalocyanine was found to be very low. Moreover, the cellular uptake, localization, cell cycle, apoptosis through an ELISA assay, and immunochemistry method were investigated in LNCaP cells. Our results showed that the tested photosensitizer possesses very interesting biological activity, depending on experimental conditions.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences , Dojazd 30, 60-631 Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Altun S, Orman EB, Odabaş Z, Altındal A, Rıza Özkaya A. Gas sensing and electrochemical properties of tetra and octa 2H-chromen-2-one substituted iron(ii) phthalocyanines. Dalton Trans 2015; 44:4341-54. [DOI: 10.1039/c4dt03301a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2, CO and SO2 sensing and redox properties of differently substituted novel iron(ii) phthalocyanines were investigated. The spin coated films of the compounds displayed high sensitivity towards CO and CO2. However, exposure to SO2 had no considerable effect on the sensor current.
Collapse
Affiliation(s)
- Selçuk Altun
- Department of Chemistry
- Marmara University
- Istanbul
- Turkey
| | | | - Zafer Odabaş
- Department of Chemistry
- Marmara University
- Istanbul
- Turkey
| | - Ahmet Altındal
- Department of Physics
- Yıldız Technical University
- Istanbul
- Turkey
| | | |
Collapse
|
7
|
Synthesis and characterization of metallo phthalocyanines bearing 7-oxy-3-(4-pyridyl)coumarin substituents and their supramolecular structures with vanadyl bis(acetylacetonate). Polyhedron 2012. [DOI: 10.1016/j.poly.2012.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|