1
|
Malik MA, Hashmi AA, Al-Bogami AS, Wani MY. Harnessing the power of gold: advancements in anticancer gold complexes and their functionalized nanoparticles. J Mater Chem B 2024; 12:552-576. [PMID: 38116755 DOI: 10.1039/d3tb01976d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer poses a formidable challenge, necessitating improved treatment strategies. Metal-based drugs and nanotechnology offer new hope in this battle. Versatile gold complexes and functionalized gold nanoparticles exhibit unique properties like biologically inert behaviour, outstanding light absorption, and heat-conversion abilities. These nanoparticles can be finely tuned for drug delivery, enabling precise and targeted cancer therapy. Their exceptional drug-loading capacity and low toxicity, stemming from excellent stability, biocompatibility, and customizable shapes, make them a promising option for enhancing cancer treatment outcomes and improving diagnostic imaging. Leveraging these attributes, researchers can design more effective and targeted cancer therapeutics. The potential of functionalized gold nanoparticles to advance cancer treatment and diagnostics holds a promising avenue for further exploration and development in the fight against cancer. This review article delves into the finely tuned attributes of functionalized gold nanoparticles, unveiling their potential for application in drug delivery for precise and targeted cancer therapy.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Department of Chemistry, University of Kashmir, 190006 Srinagar, Jammu and Kashmir, India.
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Athar Adil Hashmi
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Bormio Nunes JH, Simoni DA, Braga LE, Ruiz ALT, Ernesto de Carvalho J, Corbi PP. Synthesis, characterization, crystal structure and in vitro antiproliferative assays of the 2-thiouracilato(triphenylphosphine)gold(I) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Paprocka R, Modzelewska-Banachiewicz B, Pazderski L, Mazur L, Kutkowska J, Niedzielska D, Psurski M, Wietrzyk J, Sączewski J. Synthesis, crystal structure, 1H, 13C and 15N NMR studies, and biological evaluation of a new amidrazone-derived Au(III) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Linear gold(I) complex with tris-(2-carboxyethyl)phosphine (TCEP): Selective antitumor activity and inertness toward sulfur proteins. J Inorg Biochem 2018; 186:104-115. [PMID: 29885553 DOI: 10.1016/j.jinorgbio.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
The search for modulating ligand substitution reaction in gold complexes is essential to find new active metallo compounds for medical applications. In this work, a new linear and hydrosoluble goldI complex with tris-(2-carboxyethylphosphine) (AuTCEP). The two phosphines coordinate linearly to the metal as solved by single crystal X-ray diffraction. Complete spectroscopic characterization is also reported. In vitro growth inhibition (GI50) in a panel of nine tumorigenic and one non-tumorigenic cell lines demonstrated the complex is highly selective to ovarium adenocarcinoma (OVCAR-03) with GI50 of 3.04 nmol mL-1. Moreover, non-differential uptake of AuTCEP was observed between OVCAR-03 (tumor) and HaCaT (non-tumor) two cell lines. Biophysical evaluation with the sulfur-rich biomolecules showed the compound does not interact with two types of zinc fingers, bovine serum albumin, N-acetyl-l-cysteine and also l-histidine, revealing to be inert to ligand substitution reactions with these molecules. However, AuTCEP demonstrated to cleave plasmidial DNA, suggesting DNA as a possible target. No antibacterial activity was observed in the strains evaluated. Besides, it inhibits 15% of the activity of a mixture of serine-β-lactamase and metallo-β-lactamase from Bacillus cereus in the enzymatic activity assay, similarly to EDTA. These results suggest AuTCEP is selective to metallo-β-lactamase but the cell uptake is hindered, and the compound does not reach the periplasmic space of Gram-positive bacteria. The unique inert behavior of AuTCEP is interesting and represent the modulation of the reactivity through coordination chemistry to decrease the toxicity associated with AuI complexes and its lack of specificity, generating very selective compounds with unexpected targets.
Collapse
|
5
|
Abbehausen C, Manzano C, Corbi P, Farrell N. Effects of coordination mode of 2-mercaptothiazoline on reactivity of Au(I) compounds with thiols and sulfur-containing proteins. J Inorg Biochem 2016; 165:136-145. [DOI: 10.1016/j.jinorgbio.2016.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/13/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
|
6
|
Appelt P, Fagundes FD, Facchin G, Gabriela Kramer M, Back DF, Cunha MA, Sandrino B, Wohnrath K, de Araujo MP. Ruthenium (II) complexes containing 2-mercaptothiazolinates as ligands and evaluation of their antimicrobial activity. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Silver complexes with sulfathiazole and sulfamethoxazole: Synthesis, spectroscopic characterization, crystal structure and antibacterial assays. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Glišić BĐ, Djuran MI. Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans 2014; 43:5950-69. [PMID: 24598838 DOI: 10.1039/c4dt00022f] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interest in antimicrobial gold complexes originated from the work of Robert Koch at the end of 19th century, who demonstrated that potassium dicyanidoaurate(I), K[Au(CN)2], showed activity against Mycobacterium tuberculosis, a causative agent of tuberculosis. Subsequently, a large number of gold(I) and gold(III) complexes have been evaluated as possible antimicrobial agents against a broad spectrum of bacteria, fungi and parasites. The first part of the present review article summarizes the results achieved in the field of antibacterial and antifungal activity of gold(I) and gold(III) complexes. The represented gold(I) complexes have been divided into three distinct classes based on the type of coordinated ligand: (i) complexes with phosphine-type ligands, (ii) complexes with N-heterocyclic carbene ligands and (iii) various other gold(I) complexes, while the results related to the antibacterial and antifungal gold(III) complexes have been mainly focused on the organometallic-type of complexes. The second section of this article represents findings obtained from the evaluation of antimalarial activity of gold complexes against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum parasite. Antimalarial gold(I) and gold(III) complexes have been divided into the following classes, based on the nature of the coordinated ligand: (i) complexes with chloroquine and its derivatives, (ii) complexes with N-heterocyclic carbene ligands, (iii) complexes containing functionalised alkynes and (iv) thiosemicarbazonato ligands, as well as (v) other gold(I) and gold(III) complexes. In the last section of the review, gold(I) and gold(III) complexes have been reported to be potential agents against parasites that cause amoebiasis, leishmaniasis and trypanosomiasis. A systematic summary of these results could contribute to the future design of new gold(I) and gold(III) complexes as potential antimicrobial agents.
Collapse
Affiliation(s)
- Biljana Đ Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | | |
Collapse
|
9
|
Abbehausen C, Sucena SF, Lancellotti M, Heinrich TA, Abrão EP, Costa-Neto CM, Formiga AL, Corbi PP. Synthesis, spectroscopic characterization, DFT studies, and antibacterial and antitumor activities of a novel water soluble Pd(II) complex with l-alliin. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.11.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Abbehausen C, de Paiva RE, Formiga AL, Corbi PP. Studies of the tautomeric equilibrium of 1,3-thiazolidine-2-thione: Theoretical and experimental approaches. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sucena SF, Paiva REF, Abbehausen C, Mattos IB, Lancellotti M, Formiga ALB, Corbi PP. Chemical, spectroscopic characterization, DFT studies and antibacterial activities in vitro of a new gold(I) complex with rimantadine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 89:114-118. [PMID: 22257715 DOI: 10.1016/j.saa.2011.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/15/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
A novel gold(I) complex with rimantadine (RTD) was obtained and structurally characterized by a set of chemical and spectroscopic analysis. 1H, 13C and 15N nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic measurements suggest coordination of the ligand to Au(I) through the N atom of the ethanamine group. Theoretical (DFT) calculations confirmed the IR assignments and permit proposing an optimized geometry for the complex. The gold(I)-rimantadine complex (Au-RTD) is soluble in methanol, ethanol, dimethylsulfoxide, acetone and acetonitrile. The preliminary kinetic studies based on UV-vis spectroscopic measurements indicate the stability of the compound in solution. Antibacterial activities of the complex were evaluated by an antibiogram assay. The Au-RTD complex showed an effective in vitro antibacterial activity against the Pseudomonas aeruginosa, Escherichia coli (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains.
Collapse
Affiliation(s)
- Suelen F Sucena
- Bioinorganic and Medicinal Chemistry Research Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
de Paiva RE, Abbehausen C, Gomes AF, Gozzo FC, Lustri WR, Formiga AL, Corbi PP. Synthesis, spectroscopic characterization, DFT studies and antibacterial assays of a novel silver(I) complex with the anti-inflammatory nimesulide. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Silver(I) and gold(I) complexes with penicillamine: Synthesis, spectroscopic characterization and biological studies. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|