1
|
Martins DOS, Ruiz UEA, Santos IA, Oliveira IS, Guevara-Vega M, de Paiva REF, Abbehausen C, Sabino-Silva R, Corbi PP, Jardim ACG. Exploring the antiviral activities of the FDA-approved drug sulfadoxine and its derivatives against Chikungunya virus. Pharmacol Rep 2024; 76:1147-1159. [PMID: 39150661 DOI: 10.1007/s43440-024-00635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.
Collapse
Affiliation(s)
- Daniel Oliveira Silva Martins
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
- Institute of Bioscience, Language and Exact Sciences - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Uriel Enrique Aquino Ruiz
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | | | - Marco Guevara-Vega
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | | | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil.
- Institute of Bioscience, Language and Exact Sciences - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
2
|
Sun Z, Li T, Mei T, Liu Y, Wu K, Le W, Hu Y. Nanoscale MOFs in nanomedicine applications: from drug delivery to therapeutic agents. J Mater Chem B 2023; 11:3273-3294. [PMID: 36928915 DOI: 10.1039/d3tb00027c] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Metal-organic frameworks (MOFs) hold great promise for widespread applications in biomedicine and nanomedicine. MOFs are one of the most fascinating nanocarriers for drug delivery, benefiting from their high porosity and facile modification. Furthermore, the tailored components of MOFs can be therapeutic agents for various treatments, including drugs as organic ligands of MOFs, active metal as central metal ions of MOFs, and their combinations as carrier-free MOF-based nanodrug. In this review, the advances in delivery systems and applications as therapeutic agents for nanoscale MOF-based materials are summarized. The challenges of MOFs in clinical translation and the future directions in the field of MOFs therapy are also discussed. We hope that more researchers will focus their attention on advancing and translating MOF-based nanodrugs into pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Zeyi Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China. .,Shanghai East Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianxiao Mei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yang Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kerui Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Candido TZ, de Paiva REF, Figueiredo MC, de Oliveira Coser L, Frajácomo SCL, Abbehausen C, Cardinalli IA, Lustri WR, Carvalho JE, Ruiz ALTG, Corbi PP, Lima CSP. Silver Nimesulide Complex in Bacterial Cellulose Membranes as an Innovative Therapeutic Method for Topical Treatment of Skin Squamous Cell Carcinoma. Pharmaceutics 2022; 14:462. [PMID: 35214194 PMCID: PMC8877292 DOI: 10.3390/pharmaceutics14020462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation act on skin squamous cell carcinoma (SSCC) development and progression. Curative therapy for SSCC patients is mainly based on surgical resection, which can cause various sequelae. Silver ions have in vitro activities over tumor cells, while nimesulide has antioxidant and anti-inflammatory activities. This study aimed to evaluate the effects of a silver(I) complex with nimesulide (AgNMS) incorporated in a sustained release device based on bacterial cellulose membrane, named AgNMS@BCM, on topic SSCC treatment. The antiproliferative effect of AgNMS complex was evaluated in the SCC4, SCC15 and FaDu SCC lines. AgNMS complex activity on exposure of phosphatidylserine (PS) residues and multicaspase activation were evaluated on FaDu cells by flow cytometry. The AgNMS@BCM effects were evaluated in a SSCC model induced by 7,12-dimethylbenzanthracene/12-o-tetradecanoyl-phorbol-13-acetate (DMBA/TPA) in mice. Toxicity and tumor size were evaluated throughout the study. AgNMS complex showed antiproliferative activity in SCC15 and FaDu lines in low to moderate concentrations (67.3 µM and 107.3 µM, respectively), and induced multicaspase activation on FaDu cells. The AgNMS@BCM did not induce toxicity and reduced tumor size up to 100%. Thus, the application of AgNMS@BCM was effective and safe in SSCC treatment in mice, and can be seen as a potential and safe agent for topic treatment of SSCC in humans.
Collapse
Affiliation(s)
- Tuany Zambroti Candido
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, University of Campinas-UNICAMP, Campinas 13083-887, SP, Brazil;
| | | | - Mariana Cecchetto Figueiredo
- Postgraduate Program in Medical Sciences, Faculty of Medical Sciences, University of Campinas-UNICAMP, Campinas 13083-887, SP, Brazil;
| | - Lilian de Oliveira Coser
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas-UNICAMP, Campinas 13083-887, SP, Brazil;
| | | | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas 13083-970, SP, Brazil; (R.E.F.d.P.); (C.A.); (P.P.C.)
| | | | - Wilton Rogerio Lustri
- Department of Biological and Health Sciences, University of Araraquara-UNIARA, Araraquara 14801-320, SP, Brazil; (S.C.L.F.); (W.R.L.)
| | - João Ernesto Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas-UNICAMP, Campinas 13083-871, SP, Brazil; (J.E.C.); (A.L.T.G.R.)
| | - Ana Lucia Tasca Gois Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas-UNICAMP, Campinas 13083-871, SP, Brazil; (J.E.C.); (A.L.T.G.R.)
| | - Pedro Paulo Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas 13083-970, SP, Brazil; (R.E.F.d.P.); (C.A.); (P.P.C.)
| | - Carmen Silvia Passos Lima
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, University of Campinas-UNICAMP, Campinas 13083-887, SP, Brazil;
| |
Collapse
|
4
|
Esquezaro PG, Manzano CM, Nakahata DH, Santos IA, Ruiz UEA, Santiago MB, Silva NBS, Martins CHG, Pereira DH, Bergamini FRG, Jardim ACG, Corbi PP. Synthesis, spectroscopic characterization and in vitro antibacterial and antiviral activities of novel silver(I) complexes with mafenide and ethyl-mafenide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Korneeva EV, Smolentsev AI, Antzutkin ON, Ivanov AV. A novel silver(I) di-iso-butyldithiocarbamate: Unusually complicated 1-D polymeric structure, multiple ligand-supported Ag–Ag interactions and its capability to bind gold(III). Preparation, structural organisation and (13C, 15N) CP-MAS NMR of [Ag6(S2CNiBu2)6] and [Au(S2CNiBu2)2][AgCl2]. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Wei W, Evseenko VI, Khvostov MV, Borisov SA, Tolstikova TG, Polyakov NE, Dushkin AV, Xu W, Min L, Su W. Solubility, Permeability, Anti-Inflammatory Action and In Vivo Pharmacokinetic Properties of Several Mechanochemically Obtained Pharmaceutical Solid Dispersions of Nimesulide. Molecules 2021; 26:molecules26061513. [PMID: 33802031 PMCID: PMC7998760 DOI: 10.3390/molecules26061513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Nimesulide (NIM, N-(4-nitro-2-phenoxyphenyl)methanesulfonamide) is a relatively new nonsteroidal anti-inflammatory analgesic drug. It is practically insoluble in water (<0.02 mg/mL). This very poor aqueous solubility of the drug may lead to low bioavailability. The objective of the present study was to investigate the possibility of improving the solubility and the bioavailability of NIM via complexation with polysaccharide arabinogalactan (AG), disodium salt of glycyrrhizic acid (Na2GA), hydroxypropyl-β-cyclodextrin (HP-β-CD) and MgCO3. Solid dispersions (SD) have been prepared using a mechanochemical technique. The physical properties of nimesulide SD in solid state were characterized by differential scanning calorimetry and X-ray diffraction studies. The characteristics of the water solutions which form from the obtained solid dispersions were analyzed by reverse phase and gel permeation HPLC. It was shown that solubility increases for all complexes under investigation. These phenomena are obliged by complexation with auxiliary substances, which was shown by 1H-NMR relaxation methods. The parallel artificial membrane permeability assay (PAMPA) was used for predicting passive intestinal absorption. Results showed that mechanochemically obtained complexes with polysaccharide AG, Na2GA, and HP-β-CD enhanced permeation of NIM across an artificial membrane compared to that of the pure NIM. The complexes were examined for anti-inflammatory activity on a model of histamine edema. The substances were administered per os to CD-1 mice. As a result, it was found that all investigated complexes dose-dependently reduce the degree of inflammation. The best results were obtained for the complexes of NIM with Na2GA and HP-β-CD. In noted case the inflammation can be diminished up to 2-fold at equal doses of NIM.
Collapse
Affiliation(s)
- Wei Wei
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
| | - Veronica I. Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
| | - Mikhail V. Khvostov
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentiev Avenue 9, Novosibirsk 630090, Russia; (S.A.B.); (T.G.T.)
| | - Sergey A. Borisov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentiev Avenue 9, Novosibirsk 630090, Russia; (S.A.B.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentiev Avenue 9, Novosibirsk 630090, Russia; (S.A.B.); (T.G.T.)
| | - Nikolay E. Polyakov
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090, Russia
| | - Aleksandr V. Dushkin
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze, 18, Novosibirsk 630128, Russia; (V.I.E.); (M.V.K.); (N.E.P.)
| | - Wenhao Xu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
| | - Lu Min
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (W.W.); (A.V.D.); (W.X.); (L.M.)
- Correspondence:
| |
Collapse
|
7
|
Rendošová M, Gyepes R, Maruščáková IC, Mudroňová D, Sabolová D, Kello M, Vilková M, Almáši M, Huntošová V, Zemek O, Vargová Z. An in vitro selective inhibitory effect of silver(i) aminoacidates against bacteria and intestinal cell lines and elucidation of the mechanism of action by means of DNA binding properties, DNA cleavage and cell cycle arrest. Dalton Trans 2021; 50:936-953. [PMID: 33350415 DOI: 10.1039/d0dt03332d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel silver(i) aminoacidate complexes {[Ag(HVal)(H2O)(NO3)]}n (AgVal) and {[Ag3(HAsp)2(NO3)]}n·nH2O (AgAsp) were prepared, investigated and fully characterized by vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis, X-ray crystallography and mass spectrometry. Their stability in D2O and PBS buffer was verified by time-dependent 1H and 13C NMR measurements. Their in vitro antibacterial activity (against pathogenic Staphylococcus aureus CCM4223, Escherichia coli CCM4787) and that against probiotic bacteria Lactobacillus plantarum CCM7102 and Lactobacillus reuteri (L26) were determined and potential dosing concentration was evaluated. The cytotoxicity of both the complexes against intestinal porcine epithelial (IPEC-1) and human epithelial colorectal adenocarcinoma (CaCo-2) cell lines was determined using the colorimetric MTT assay and against human metastatic melanoma (A2058), human pancreatic adenocarcinoma (PaTu 8902), human cervical adenocarcinoma (HeLa), human colorectal carcinoma (HCT116), human leukaemic T cell lymphoma (Jurkat), and human dermal fibroblasts (HDF) using colorimetric MTS assay. The selectivity index (SI) was identified for intestinal cancer (CaCo-2) and healthy (IPEC-1) cells. The mechanism of action of AgVal and AgAsp was further elucidated and discussed by the study of their binding affinity toward the CT DNA, the ability to cleave the supercoiled form of pUC19 DNA and the ability to influence numbers of cells within each cell cycle.
Collapse
Affiliation(s)
- Michaela Rendošová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Aquaroni NAS, Nakahata DH, Lazarini SC, Resende FA, Cândido ALP, da Silva Barud H, Claro AM, de Carvalho JE, Ribeiro CM, Pavan FR, Lustri BC, Ribeiro TRM, Moreira CG, Cândido TZ, Lima CSP, Ruiz ALTG, Corbi PP, Lustri WR. Antibacterial activities and antiproliferative assays over a tumor cells panel of a silver complex with 4-aminobenzoic acid: Studies in vitro of sustained release using bacterial cellulose membranes as support. J Inorg Biochem 2020; 212:111247. [PMID: 32920435 DOI: 10.1016/j.jinorgbio.2020.111247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
The aims of this work were to evaluate the antibacterial and antiproliferative potential in vitro of the metal complex with 4-aminobenzoic acid (Ag-pABA) and a drug delivery system based on bacterial cellulose (BC-Ag-pABA). The Ag-pABA complex was characterized by elemental analysis, high resolution mass spectrometry and single-crystal X-ray diffraction techniques, which indicated a 1:2 metal/pABA composition plus a nitrate ion coordinated to silver by the oxygen atom, with the coordination formula [Ag (C7H7NO2)2(NO3)]. The coordination of pABA to the silver ion occurred by the nitrogen atom. The in vitro antibacterial activity of the complex evaluated by minimum inhibitory concentration assays demonstrated the effective growth inhibitory activity against Gram-positive, Gram-negative biofilm producers and acid-alcohol resistant Bacillus. The antiproliferative activities against a panel of eight tumor cells demonstrated the activity of the complex with a significant selectivity index (SI). The DNA interaction capacity and the Ames Test indicated the absence of mutagenicity. The BC-Ag-pABA composite showed an effective capacity of sustained release of Ag-pABA. The observed results validate further studies on its mechanisms of action and the conditions that mediate the in vivo biological effects using animal models to confirm its safety and effectiveness for treatment of skin and soft tissues infected by bacterial pathogens, urinary tract infections and cancer.
Collapse
Affiliation(s)
| | - Douglas H Nakahata
- University of Araraquara - UNIARA, 14801-320 Araraquara, São Paulo, Brazil
| | - Silmara C Lazarini
- University of Araraquara - UNIARA, 14801-320 Araraquara, São Paulo, Brazil
| | - Flávia A Resende
- University of Araraquara - UNIARA, 14801-320 Araraquara, São Paulo, Brazil
| | - Amanda L P Cândido
- University of Araraquara - UNIARA, 14801-320 Araraquara, São Paulo, Brazil
| | | | - Amanda Maria Claro
- University of Araraquara - UNIARA, 14801-320 Araraquara, São Paulo, Brazil
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 13081-970 Campinas, SP, Brazil
| | - Camila M Ribeiro
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, 14801-903 Araraquara, Brazil
| | - Fernando R Pavan
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, 14801-903 Araraquara, Brazil
| | - Bruna C Lustri
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, 14801-903 Araraquara, Brazil
| | | | - Cristiano G Moreira
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, 14801-903 Araraquara, Brazil
| | - Tuany Zambroti Cândido
- Faculty of Medical Sciences, University of Campinas - UNICAMP, 13081-970 Campinas, SP, Brazil
| | | | - Ana Lúcia T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 13081-970 Campinas, SP, Brazil
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970 Campinas, São Paulo, Brazil
| | - Wilton R Lustri
- University of Araraquara - UNIARA, 14801-320 Araraquara, São Paulo, Brazil.
| |
Collapse
|
9
|
Silver(I) and gold(I) complexes with sulfasalazine: Spectroscopic characterization, theoretical studies and antiproliferative activities over Gram-positive and Gram-negative bacterial strains. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Exploring the physical stability of three nimesulide–indomethacin co-amorphous systems from the perspective of molecular aggregates. Eur J Pharm Sci 2020; 147:105294. [PMID: 32147483 DOI: 10.1016/j.ejps.2020.105294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
|
11
|
Manzano CM, Nakahata DH, Tenorio JC, Lustri WR, Resende Nogueira FA, Aleixo NA, da Silva Gomes PS, Pavan FR, Grecco JA, Ribeiro CM, Corbi PP. Silver complexes with fluoroanthranilic acid isomers: Spectroscopic characterization, antimycobacterial activity and cytotoxic studies over a panel of tumor cells. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Uram Ł, Filipowicz-Rachwał A, Misiorek M, Winiarz A, Wałajtys-Rode E, Wołowiec S. Synthesis and Different Effects of Biotinylated PAMAM G3 Dendrimer Substituted with Nimesulide in Human Normal Fibroblasts and Squamous Carcinoma Cells. Biomolecules 2019; 9:biom9090437. [PMID: 31480608 PMCID: PMC6770390 DOI: 10.3390/biom9090437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinoma (SCC) remains a main cause of mortality in patients with neck and head cancers, with poor prognosis and increased prevalence despite of available therapies. Recent studies have identified a role of cyclooxygenases, particularly inducible isoform cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in cancer cell proliferation, and its inhibition become a target for control of cancer development, particularly in the view of recognized additive or synergic action of COX-2 inhibitors with other forms of therapy. Nimesulide (N), the selective COX-2 inhibitor, inhibits growth and proliferation of various types of cancer cells by COX-2 dependent and independent mechanisms. In the presented study, the conjugates of biotinylated third generation poly(amidoamine) dendrimer (PAMAM) with covalently linked 18 (G3B18N) and 31 (G3B31N) nimesulide residues were synthesized and characterized by NMR spectroscopy. Biological properties of conjugates were evaluated, including cytotoxicity, proliferation, and caspase 3/7 activities in relation to COX-2/PGE2 axis signaling in human normal fibroblast (BJ) and squamous cell carcinoma (SCC-15). Both conjugates exerted a selective cytotoxicity against SCC-15 as compared with BJ cells at low 1.25-10 µM concentration range and their action in cancer cells was over 250-fold stronger than nimesulide alone. Conjugates overcome apoptosis resistance and sensitized SCC-15 cells to the apoptotic death independently of COX-2/PGE2 axis. In normal human fibroblasts the same concentrations of G3B31N conjugate were less effective in inhibition of proliferation and induction of apoptosis, as measured by caspase 3/7 activity in a manner depending on increase of PGE2 production by either COX-1/COX-2.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland.
| | | | - Maria Misiorek
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Aleksandra Winiarz
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-310 Rzeszow, Poland
| |
Collapse
|
13
|
Jaros SW, Sliwińska-Hill U, Białońska A, Nesterov DS, Kuropka P, Sokolnicki J, Bażanów B, Smoleński P. Light-stable polypyridine silver(i) complexes of 1,3,5-triaza-7-phosphaadamantane (PTA) and 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTA[double bond, length as m-dash]S): significant antiproliferative activity of representative examples in aqueous media. Dalton Trans 2019; 48:11235-11249. [PMID: 31237306 DOI: 10.1039/c9dt01646e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of novel silver(i) 2,2':6',2''-terpyridine (tpy), 4'-(4-methylphenyl)-2,2':6':2''-terpyridine (tpy-Ph-Me) and 1,10-phenanthroline-5,6-dione (dione) derivatives containing PTA (1,3,5-triaza-7-phosphaadamantane) or 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTA[double bond, length as m-dash]S) have been synthesized and fully characterized. Two types of complexes have been obtained, monocationic [Ag(tpy)(PTA)](NO3) (1), [Ag(tpy-Ph-Me)(PTA)](NO3) (2), [Ag(dione)(PTA[double bond, length as m-dash]S)](BF4) (4) and [Ag(dione)2](PF6) (5) and neutral [Ag(dione)(PTA[double bond, length as m-dash]S)(NO3)] (3). The solid-state structures of four complexes have been determined by single-crystal X-ray diffraction. Complexes 1 and 2 are luminescent at room temperature and 77 K while 5 shows emission only at 77 K. Compounds 3 and 4 are not emissive. Furthermore, representative light-stable and water-soluble 1 and 3 were evaluated for their cytotoxic activities on the normal human dermal fibroblast (NHDF) cell line and their antitumor activity using the human lung carcinoma (A549), epithelioid cervix carcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell lines. Interactions between the complexes and human serum albumin (HSA) using UV-Vis, fluorescence and circular dichroism spectroscopy (CD) were also investigated.
Collapse
Affiliation(s)
- Sabina W Jaros
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Urszula Sliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wrocław, Poland
| | - Agata Białońska
- Department of Analytical Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wrocław, Poland
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Piotr Kuropka
- Department of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Jerzy Sokolnicki
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Barbara Bażanów
- Department of Veterinary Microbiology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
14
|
Preparation of solid lipid nanoparticles of furosemide-silver complex and evaluation of antibacterial activity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ali AA, Al-Hassani RM, Hussain DH, Rheima AM, Abd AN, Meteab HS. Fabrication of Solar Cells Using Novel Micro- and Nano-Complexes of Triazole Schiff Base Derivatives. JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY 2019; 54. [DOI: 10.35741/issn.0258-2724.54.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A new asymmetrical Schiff base triazole ligand, (4-(((3-mercapto-5-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-4-yl)imino)methyl)phenol) (L1), was synthesized and characterized using CHNS elemental analysis and FTIR, UV/Vis, mass, 1H NMR, and 13C NMR spectroscopies. The Schiff base metal complexes of NiL1, PdL1, and AgL1 were synthesized and identified using FTIR, UV/Vis and flame atomic absorption spectroscopies and elemental analysis, as well as magnetic susceptibility and conductivity measurements. NanoL1 and its complexes, nanoNiL1, nanoPdL1, and nanoAgL1, were prepared as compounds using ultrasound. The new nano-complexes were characterized using FTIR, UV/Vis, atomic force microscopy, scanning electron microscope, and XRD measurements. The structural, optical and morphological properties were studied in a solution of DMSO and then precipitated on silicon slides using the drop-casting method to fabricate the solar cells.
Collapse
|
16
|
Korneeva EV, Loseva OV, Smolentsev AI, Ivanov AV. Reactivity of Silver(I) Diethyldithiocarbamate and Ion-Polymeric Complexes {[Au(S2CNEt2)2][AgCl2]}n and {[Au(S2CNEt2)2]2[AgCl2]Cl·2H2O}n: Synthesis, Supramolecular Structures, and Thermal Behavior. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218080200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Nunes JH, Nakahata DH, Lustri WR, Corbi PP, de Paiva RE. The nitro-reduced metabolite of nimesulide: Crystal structure, spectroscopic characterization, ESI-QTOF mass spectrometric analysis and antibacterial evaluation. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Copper(II) and silver(I) complexes with sulfamethizole: synthesis, spectroscopic characterization, ESI-QTOF mass spectrometric analysis, crystal structure and antibacterial activities. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Li H, Wang J, Cong J, Wei C, Li J, Liu H, Li S, Yang M. Biomimetic synthesis of proline-derivative templated mesoporous silica for increasing the brain distribution of diazepam and improving the pharmacodynamics of nimesulide. Drug Deliv 2017; 24:1086-1098. [PMID: 28762846 PMCID: PMC8241142 DOI: 10.1080/10717544.2017.1359863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Herein a new kind of proline-derivative templated mesoporous silica with curved channels (CMS) was biomimetically synthesized and applied as carrier to improve the drug dissolution and bioavailability of hydrophobic diazepam (DZP) and nimesulide (NMS). Drugs can be incorporated into CMS with high efficiency; during this process, they successfully transformed to amorphous phase. As a result, the dissolution rate of DZP and NMS was significantly improved. Biodistribution study confirmed that CMS converted DZP distribution in mice with the tendency of lung targeting and brain targeting. At 45 min postadministration, the concentrations of DZP in plasma, lung and brain were 8.57-fold, 124.94-fold and 19.55-fold higher from 1:3 DZP/CMS sample than that of pure DZP sample, respectively. At 90 min postadministration, the content of DZP in brain was 62.31-fold higher for 1:3 DZP/CMS sample than that of pure DZP. Besides, the anti-inflammatory and analgesic effects of 1:3 NMS/CMS were systematic evaluated using mouse ankle swelling test (MAST), mouse ear swelling test (MEST) and mouse writhing test (MWT). The results indicated that after incorporating into CMS, the therapeutic effects of NMS were obviously improved, and the inhibition rates of 1:3 NMS/CMS in all pharmacodynamics tests varied from 102.2% to 904.3%.
Collapse
Affiliation(s)
- Heran Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianxin Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jialiang Cong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chen Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Lustri WR, Lazarini SC, Lustri BC, Corbi PP, Silva MAC, Resende Nogueira FA, Aquino R, Amaral AC, Treu Filho O, Massabni AC, da Silva Barud H. Spectroscopic characterization and biological studies in vitro of a new silver complex with furosemide: Prospective of application as an antimicrobial agent. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Nunes JHB, Bergamini FR, Lustri WR, de Paiva PP, Ruiz ALT, de Carvalho JE, Corbi PP. Synthesis, characterization and in vitro biological assays of a silver(I) complex with 5-fluorouracil: A strategy to overcome multidrug resistant tumor cells. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Hamamci Alisir S, Sariboga B, Caglar S, Buyukgungor O. Synthesis, characterization, photoluminescent properties and antimicrobial activities of two novel polymeric silver(I) complexes with diclofenac. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Fiori ATM, Nakahata DH, Cuin A, Lustri WR, Corbi PP. Synthesis, crystallographic studies, high resolution mass spectrometric analyses and antibacterial assays of silver(I) complexes with sulfisoxazole and sulfadimethoxine. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.09.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Nimesulide inhibits pathogenic fungi: PGE2-dependent mechanisms. Folia Microbiol (Praha) 2016; 62:169-174. [PMID: 27866353 DOI: 10.1007/s12223-016-0483-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
Abstract
Certain non-steroidal anti-inflammatory drugs can inhibit fungal growth, fungal prostaglandin E2 production, and enzyme activation. This study aims to investigate the antifungal effect of nimesulide against pathogenic filamentous fungi and yeast. The experiments detailed below were also designed to investigate whether the action is dependent on E2 fungal prostaglandins. Our data showed that nimesulide exhibited potent antifungal activity, mainly against Trichophyton mentagrophytes (ATCC 9533) and Cryptococcus neoformans with MIC values of 2 and 62 μg/mL, respectively. This drug was also able to inhibit the growth of clinic isolates of filamentous fungi, such as Aspergillus fumigatus, and dermatophytes, such as T. rubrum, T. mentagrophytes, Epidermophyton floccosum, Microsporum canis, and M. gypseum, with MIC values ranging from 112 to 770 μg/mL. Our data also showed that the inhibition of fungal growth by nimesulide was mediated by a mechanism dependent on PGE2, which led to the inhibition of essential fungal enzymes. Thus, we concluded that nimesulide exerts a fungicidal effect against pathogenic filamentous fungi and yeast, involving the inhibition of fungal prostaglandins and fungal enzymes important to the fungal growth and colonization.
Collapse
|
25
|
Silva IM, Carvalho MA, Oliveira CS, Profirio DM, Ferreira RB, Corbi PP, Formiga AL. Enhanced performance of a metal-organic framework analogue to MIL-101(Cr) containing amine groups for ibuprofen and nimesulide controlled release. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Banti CN, Hadjikakou SK. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Metal Complexes and Their Effect at the Cellular Level. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501480] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christina N. Banti
- Section of Inorganic and Analytical Chemistry; Department of Chemistry; University of Ioannina; 45110 Ioannina Greece
| | - Sotiris K. Hadjikakou
- Section of Inorganic and Analytical Chemistry; Department of Chemistry; University of Ioannina; 45110 Ioannina Greece
| |
Collapse
|
27
|
Nunes JHB, de Paiva REF, Cuin A, da Costa Ferreira AM, Lustri WR, Corbi PP. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Majerz I, Trynda-Lemiesz L. Copper(II) ion as modulator of the conformation of non-steroidal anti-inflammatory drugs. Theoretical insight into the structure. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Zanvettor NT, Abbehausen C, Lustri WR, Cuin A, Masciocchi N, Corbi PP. Silver sulfadoxinate: Synthesis, structural and spectroscopic characterizations, and preliminary antibacterial assays in vitro. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Silver complexes with sulfathiazole and sulfamethoxazole: Synthesis, spectroscopic characterization, crystal structure and antibacterial assays. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
do Couto Almeida J, Marzano I, de Paula FS, Pivatto M, Lopes N, de Souza P, Pavan F, Formiga A, Pereira-Maia E, Guerra W. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Soliman SM, Kassem TS, Badr AM, Abu Youssef MA, Assem R. Quantum chemical study, spectroscopic investigations, NBO and HOMO–LUMO analyses of 3-aminoquinoline (3AQ) and [Ag(3AQ)2(TCA)] complex (TCA=Trichloroacetate). J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
de Paiva REF, Abbehausen C, Bergamini FRG, Thompson AL, Alves DA, Lancellotti M, Corbi PP. Investigating the inclusion of the Ag(I)-nimesulide complex into β-cyclodextrin: studies in solution and in the solid state. J INCL PHENOM MACRO 2013. [DOI: 10.1007/s10847-013-0348-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Cornard JP, Lapouge C, André E. pH influence on the complexation site of Al(III) with protocatechuic acid. A spectroscopic and theoretical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 108:280-287. [PMID: 23501940 DOI: 10.1016/j.saa.2013.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
Electronic spectroscopy techniques with the aid of quantum chemical calculations, and notably the Time-Dependent Density Functional Theory, can be used to probe the structure of metal complexes in solution. Here, we report the characterization of Al(III)-protocatechuate in aqueous solution, at pH=6.5. The exploitation of the UV-vis spectra of the system by chemometric methods highlights the formation of a single complex of stoichiometry 1:1. From different structural hypothesis, the comparison of theoretical and experimental spectra shows that Al(III) forms a monodentate complex with the carboxylate function. This hypothesis is confirmed by the calculation of the complexation reaction pathways. Previous studies report the formation of a chelate involving the ortho-dihydroxyl group, at pH=3.5. These results illustrate the important dependence of the protonation state of the carboxylic function on the Al(III) fixation site on the studied ligand.
Collapse
Affiliation(s)
- Jean-Paul Cornard
- LASIR, CNRS UMR8516, Université des Sciences et Technologies de Lille, Bât C5, 59 655 Villeneuve d'Ascq Cedex, France.
| | | | | |
Collapse
|
35
|
Sun CY, Qin C, Wang XL, Su ZM. Metal-organic frameworks as potential drug delivery systems. Expert Opin Drug Deliv 2012; 10:89-101. [PMID: 23140545 DOI: 10.1517/17425247.2013.741583] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Metal-organic frameworks (MOFs) are a unique class of hybrid porous solids based on metals and organic linkers. Compared to traditional porous materials, they possess predominance of large surface areas, tunable pore size and shape, adjustable composition and functionalized pore surface, which enable them unique advantages and promises for applications in adsorption and release of therapeutic agents. AREAS COVERED This review addresses MOFs as a new avenue for drug delivery and exhibits their ability to efficiently deliver various kinds of therapeutic agents. It also details the requirements that MOFs need to satisfy for biomedical application, such as toxicological compatibility, stability, particle size, and surface modification. In addition, several approaches used to enhance encapsulation efficiency are summarized and parameters influencing delivery efficiency are also discussed. EXPERT OPINION Benefiting from the unique advantages of MOFs materials, efficient delivery of various kinds of drugs has been achieved in some MOF materials. However, it is only the outset of MOFs in drug delivery system, and numerous work need to be done before clinical applications, for example, studying their in vivo toxicity, exploring degradation mechanisms so as to establish real stability of MOFs in body's liquid, providing appropriated surface modification avenue for MOFs, and researching in vivo efficiency and pharmacokinetics of drug-loaded MOFs.
Collapse
Affiliation(s)
- Chun-Yi Sun
- Northeast Normal University, Institute of Functional Materials Chemistry, Department of Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Changchun, Jilin, 130024, China.
| | | | | | | |
Collapse
|
36
|
Bergamini FRG, Ferreira MA, de Paiva REF, Gomes AF, Gozzo FC, Formiga ALB, Corbi FCA, Mazali IO, Alves DA, Lancellotti M, Corbi PP. A binuclear silver complex with l-buthionine sulfoximine: synthesis, spectroscopic characterization, DFT studies and antibacterial assays. RSC Adv 2012. [DOI: 10.1039/c2ra21433d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|