1
|
Starosta R. Tris(aminomethyl)phosphines and Their Copper(I) (Pseudo)halide Complexes with Aromatic Diimines-A Critical Retrospection. Pharmaceuticals (Basel) 2023; 16:766. [PMID: 37242549 PMCID: PMC10221962 DOI: 10.3390/ph16050766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Metal complexes feature a wide range of available geometries, diversified lability, controllable hydrolytic stability, and easily available rich redox activity. These characteristics, combined with the specific properties of coordinated organic molecules, result in many different mechanisms of biological action, making each of the myriads of the classes of metal coordination compounds unique. This focused review presents combined and systematized results of the studies of a group of copper(I) (pseudo)halide complexes with aromatic diimines and tris(aminomethyl)phosphines of a general formula [CuX(NN)PR3], where X = I- or NCS-, NN = 2,2'-bipyridyl, 1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline or 2,2'-biquinoline, and PR3 = air-stable tris(aminomethyl)phosphines. The structural and electronic properties of the phosphine ligands and luminescent complexes are discussed. The complexes with 2,9-dimethyl-1,10-phenanthroline, apart from being air- and water-stable, exhibit a very high in vitro antimicrobial activity against the Staphylococcus aureus and Candida albicans. Moreover, some of these complexes also show a strong in vitro antitumor activity against human ovarian carcinoma cell lines: MDAH 2774 and SCOV 3, CT26 (mouse colon carcinoma), and A549 (human lung adenocarcinoma) cell lines. The tested complexes are moderately able to induce DNA lesions through free radical processes, however the trends do not reflect observed differences in biological activity.
Collapse
Affiliation(s)
- Radosław Starosta
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland;
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010400. [PMID: 36615615 PMCID: PMC9823393 DOI: 10.3390/molecules28010400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV-Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt.
Collapse
|
3
|
Synthetic protocols and applications of copper(I) phosphine and copper(I) phosphine/diimine complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Development of Nano-Antifungal Therapy for Systemic and Endemic Mycoses. J Fungi (Basel) 2021; 7:jof7020158. [PMID: 33672224 PMCID: PMC7926374 DOI: 10.3390/jof7020158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Fungal mycoses have become an important health and environmental concern due to the numerous deleterious side effects on the well-being of plants and humans. Antifungal therapy is limited, expensive, and unspecific (causes toxic effects), thus, more efficient alternatives need to be developed. In this work, Copper (I) Iodide (CuI) nanomaterials (NMs) were synthesized and fully characterized, aiming to develop efficient antifungal agents. The bioactivity of CuI NMs was evaluated using Sporothrix schenckii and Candida albicans as model organisms. CuI NMs were prepared as powders and as colloidal suspensions by a two-step reaction: first, the CuI2 controlled precipitation, followed by hydrazine reduction. Biopolymers (Arabic gum and chitosan) were used as surfactants to control the size of the CuI materials and to enhance its antifungal activity. The materials (powders and colloids) were characterized by SEM-EDX and AFM. The materials exhibit a hierarchical 3D shell morphology composed of ordered nanostructures. Excellent antifungal activity is shown by the NMs against pathogenic fungal strains, due to the simultaneous and multiple mechanisms of the composites to combat fungi. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of CuI-AG and CuI-Chitosan are below 50 μg/mL (with 5 h of exposition). Optical and Atomic Force Microscopy (AFM) analyses demonstrate the capability of the materials to disrupt biofilm formation. AFM also demonstrates the ability of the materials to adhere and penetrate fungal cells, followed by their lysis and death. Following the concept of safe by design, the biocompatibility of the materials was tested. The hemolytic activity of the materials was evaluated using red blood cells. Our results indicate that the materials show an excellent antifungal activity at lower doses of hemolytic disruption.
Collapse
|
5
|
Seweryn A, Alicka M, Fal A, Kornicka-Garbowska K, Lawniczak-Jablonska K, Ozga M, Kuzmiuk P, Godlewski M, Marycz K. Hafnium (IV) oxide obtained by atomic layer deposition (ALD) technology promotes early osteogenesis via activation of Runx2-OPN-mir21A axis while inhibits osteoclasts activity. J Nanobiotechnology 2020; 18:132. [PMID: 32933533 PMCID: PMC7493872 DOI: 10.1186/s12951-020-00692-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to increasing aging of population prevalence of age-related disorders including osteoporosis is rapidly growing. Due to health and economic impact of the disease, there is an urgent need to develop techniques supporting bone metabolism and bone regeneration after fracture. Due to imbalance between bone forming and bone resorbing cells, the healing process of osteoporotic bone is problematic and prolonged. Thus searching for agents able to restore the homeostasis between these cells is strongly desirable. RESULTS In the present study, using ALD technology, we obtained homogeneous, amorphous layer of hafnium (IV) oxide (HfO2). Considering the specific growth rate (1.9Å/cycle) for the selected process at the temperature of 90 °C, we performed the 100 nm deposition process, which was confirmed by measuring film thickness using reflectometry. Then biological properties of the layer were investigated with pre-osteoblast (MC3T3), pre-osteoclasts (4B12) and macrophages (RAW 264.7) using immunofluorescence and RT-qPCR. We have shown, that HfO2 (i) enhance osteogenesis, (ii) reduce osteoclastogenesis (iii) do not elicit immune response and (iv) exert anti-inflammatory effects. CONCLUSION HfO2 layer can be applied to cover the surface of metallic biomaterials in order to enhance the healing process of osteoporotic bone fracture.
Collapse
Affiliation(s)
- A Seweryn
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - M Alicka
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - A Fal
- Cardinal Stefan Wyszynski University, Collegium Medicum, 01938, Warsaw, Poland
| | - K Kornicka-Garbowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, Wisznia Mała, 55-114, Wrocław, Poland
| | | | - M Ozga
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - P Kuzmiuk
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - M Godlewski
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - K Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
- Cardinal Stefan Wyszynski University, Collegium Medicum, 01938, Warsaw, Poland.
- International Institute of Translational Medicine, Jesionowa 11, Malin, Wisznia Mała, 55-114, Wrocław, Poland.
| |
Collapse
|
6
|
Komarnicka UK, Kozieł S, Zabierowski P, Kruszyński R, Lesiów MK, Tisato F, Porchia M, Kyzioł A. Copper(I) complexes with phosphines P(p-OCH3-Ph)2CH2OH and P(p-OCH3-Ph)2CH2SarGly. Synthesis, multimodal DNA interactions, and prooxidative and in vitro antiproliferative activity. J Inorg Biochem 2020; 203:110926. [DOI: 10.1016/j.jinorgbio.2019.110926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
|
7
|
New diphenylphosphane derivatives of ketoconazole are promising antifungal agents. Sci Rep 2019; 9:16214. [PMID: 31700024 PMCID: PMC6838151 DOI: 10.1038/s41598-019-52525-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Four new derivatives of ketoconazole (Ke) were synthesized: diphenylphosphane (KeP), and phosphane chalcogenides: oxide (KeOP), sulphide (KeSP) and selenide (KeSeP). These compounds proved to be promising antifungal compounds towards Saccharomyces cerevisiae and Candida albicans, especially in synergy with fluconazole. Simulations of docking to the cytochrome P450 14α-demethylase (azoles’ primary molecular target) proved that the new Ke derivatives are capable of inhibiting this enzyme by binding to the active site. Cytotoxicity towards hACSs (human adipose-derived stromal cells) of the individual compounds was studied and the IC50 values were higher than the MIC50 for C. albicans and S. cerevisiae. KeP and KeOP increased the level of the p21 gene transcript but did not change the level of p53 gene transcript, a major regulator of apoptosis, and decreased the mitochondrial membrane potential. Taken together, the results advocate that the new ketoconazole derivatives have a similar mechanism of action and block the lanosterol 14α-demethylase and thus inhibit the production of ergosterol in C. albicans membranes.
Collapse
|
8
|
Aguirrechu-Comerón A, Hernández-Molina R, González-Platas J. Structure of a One-Dimensional Copper(I) Polymer with Iodine Bridges. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Aguirrechu-Comerón A, Hernández-Molina R, González-Platas J. Structure of Two New Compounds of Copper(I) Iodide with N-Donor and P-Donor Ligands. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618040285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Selective Cu(I) complex with phosphine-peptide (SarGly) conjugate contra breast cancer: Synthesis, spectroscopic characterization and insight into cytotoxic action. J Inorg Biochem 2018; 186:162-175. [PMID: 29945023 DOI: 10.1016/j.jinorgbio.2018.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022]
Abstract
The main disadvantage of conventional anticancer chemotherapy is the inability to deliver the correct amount of drug directly to cancer. Those molecular delivering systems are very important to destroy cancer cells selectively. Herein we report synthesis of phosphine-peptide conjugate (Ph2PCH2-Sar-Gly-OH, PSG) derived from SarGly (sarcosine-glycine), which can be easily exchanged to other peptide carriers, its oxide (OPh2PCH2-Sar-Gly-OH, OPSG) and the first copper(I) complex ([CuI(dmp)(P(Ph)2CH2-Sar-Gly-OH)], 1-PSG, where dmp stands for 2,9-dimethyl-1,10-phenanthroline). The compounds were characterized by elemental analysis, NMR (1D, 2D), UV-Vis spectroscopy and DFT (Density Functional Theory) methods. PSG and 1-PSG proved to be stable in biological medium in the presence of atmospheric oxygen for several days. The cytotoxicity of the compounds and cisplatin was tested against cancer cell lines: mouse colon carcinoma (CT26; 1-PSGIC50 = 3.12 ± 0.1), human lung adenocarcinoma (A549; 1-PSGIC50 = 2.01 ± 0.2) and human breast adenocarcinoma (MCF7; 1-PSGIC50 = 0.98 ± 0.2) as well as against primary line of human pulmonary fibroblasts (MRC-5; 1-PSGIC50 = 78.56 ± 1.1). Therapeutic index for 1-PSG (MCF7) equals 80. Intracellular accumulation of 1-PSG complex increased with time and was much higher (96%) inside MCF7 cancer cells than in normal MRC5 cells (20%). Attachment of SarGly to cytotoxic copper(I) complex via phosphine motif improved selectivity of copper(I) complex 1-PSG into the cancer cells. Precise mechanistic study revealed that the 1-PSG complex causes apoptotic cells MCF7 death with simultaneous decrease of mitochondrial membrane potential and increase of caspase-9 and -3 activities. Additionally, 1-PSG generated high level of reactive oxygen species that was the reason for oxidative damages to the sugar-phosphate backbone of plasmid DNA.
Collapse
|
11
|
Evaluation of Oxidative Stress and Mitophagy during Adipogenic Differentiation of Adipose-Derived Stem Cells Isolated from Equine Metabolic Syndrome (EMS) Horses. Stem Cells Int 2018; 2018:5340756. [PMID: 29977307 PMCID: PMC6011082 DOI: 10.1155/2018/5340756] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are frequently used in both human and veterinary medicine because their unique properties, such as modulating the immune response and differentiating into multiple lineages, make them a valuable tool in cell-based therapies. However, many studies have indicated the age-, lifestyle-, and disease-related deterioration of MSC regenerative characteristics. However, it still needs to be elucidated how the patient's health status affects the effectiveness of MSC differentiation. In the present study, we isolated mesenchymal stem cells from adipose tissue (adipose-derived mesenchymal stem cells (ASCs)) from horses diagnosed with equine metabolic syndrome (EMS), a common metabolic disorder characterized by pathological obesity and insulin resistance. We investigated the metabolic status of isolated cells during adipogenic differentiation using multiple research methods, such as flow cytometry, PCR, immunofluorescence, or transmission and confocal microscopy. The results indicated the impaired differentiation potential of ASCEMS. Excessive ROS accumulation and ER stress are most likely the major factors limiting the multipotency of these cells. However, we observed autophagic flux during differentiation as a protective mechanism that allows cells to maintain homeostasis and remove dysfunctional mitochondria.
Collapse
|
12
|
Villa-Pérez C, Cadavid-Vargas JF, Di Virgilio AL, Echeverría GA, Camí GE, Soria DB. Crystal structure, Hirshfeld surface analysis, spectroscopic and biological studies on sulfamethazine and sulfaquinoxaline ternary complexes with 2,2′-biquinoline. NEW J CHEM 2018. [DOI: 10.1039/c7nj03624h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three ternary complexes with sulfaquinoxaline or sulfamethazine have been synthesized and their structural, spectroscopic and biological properties have been studied.
Collapse
Affiliation(s)
- C. Villa-Pérez
- CEQUINOR
- CONICET
- CCT La Plata
- Departamento de Química
- Facultad de Ciencias Exactas
| | | | - A. L. Di Virgilio
- CEQUINOR
- CONICET
- CCT La Plata
- Departamento de Química
- Facultad de Ciencias Exactas
| | - G. A. Echeverría
- IFLP
- CONICET
- CCT La Plata
- Departamento de Física
- Facultad de Ciencias Exactas
| | - G. E. Camí
- Química General e Inorgánica
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario
- Argentina
| | - D. B. Soria
- CEQUINOR
- CONICET
- CCT La Plata
- Departamento de Química
- Facultad de Ciencias Exactas
| |
Collapse
|
13
|
Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3027109. [PMID: 28168007 PMCID: PMC5267085 DOI: 10.1155/2017/3027109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs) constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF) treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs' function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications.
Collapse
|
14
|
Kornicka K, Nawrocka D, Lis-Bartos A, Marędziak M, Marycz K. Polyurethane–polylactide-based material doped with resveratrol decreases senescence and oxidative stress of adipose-derived mesenchymal stromal stem cell (ASCs). RSC Adv 2017. [DOI: 10.1039/c7ra02334k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to evaluate the influence of resveratrol (RES)-doped polyurethane (TPU)–polylactide (PLA) biomaterials on the senescence and oxidative stress factor of adipose-derived stem cells (ASCs) for tissue engineering.
Collapse
Affiliation(s)
- K. Kornicka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| | - D. Nawrocka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - A. Lis-Bartos
- Department of Biomaterials
- AGH University of Science and Technology
- Kraków
- Poland
| | - M. Marędziak
- Faculty of Veterinary Medicine
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - K. Marycz
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| |
Collapse
|
15
|
Komarnicka UK, Starosta R, Kyzioł A, Płotek M, Puchalska M, Jeżowska-Bojczuk M. New copper(I) complexes bearing lomefloxacin motif: Spectroscopic properties, in vitro cytotoxicity and interactions with DNA and human serum albumin. J Inorg Biochem 2016; 165:25-35. [DOI: 10.1016/j.jinorgbio.2016.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
16
|
Płotek M, Starosta R, Komarnicka UK, Skórska-Stania A, Kołoczek P, Dudek K, Kyzioł A. Tertiary to secondary reduction of aminomethylphosphane derived from 1-ethylpiperazine as a result of its coordination to ruthenium(II) centre – The first insight into the nature of process. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Płotek M, Starosta R, Komarnicka UK, Skórska-Stania A, Jeżowska-Bojczuk M, Stochel G, Kyzioł A. New ruthenium(II) coordination compounds possessing bidentate aminomethylphosphane ligands: synthesis, characterization and preliminary biological study in vitro. Dalton Trans 2016; 44:13969-78. [PMID: 26155929 DOI: 10.1039/c5dt01119a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Addition of aminomethylphosphane P{CH2N(CH2CH2)2O}3 (), PPh2{CH2N(CH2CH2)2O} () or PPh2{CH2N(CH2CH2)2NCH2CH3} () to a methanolic solution of RuCl3 results in reduction of ruthenium(iii) ions giving finally ttt-[RuCl2()2] (), ttt-[RuCl2()2] () and ttt-[RuCl2()2] (). The synthesized complexes are the first examples of ruthenium(ii) coordination compounds possessing aminomethylphosphanes chelating via phosphorus and nitrogen atoms. They were fully characterized (NMR, ESI-MS, IR, elemental analysis, X-ray crystallography). Preliminary studies of the in vitro cytotoxicity on the A549 cell line (human lung adenocarcinoma) and interactions with human serum proteins (albumin and apotransferrin) showed moderate activity of the complexes. Interestingly, the P,N-chelation leads to formation of strained 4-membered Ru-P-C-N-Ru rings, which in the case of and undergo opening in the presence of CH3CN, which results in rearrangement to ctc-[RuCl2()2(CH3CN)2] () and ctc-[RuCl2()2(CH3CN)2] ().
Collapse
Affiliation(s)
- Michał Płotek
- Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Komarnicka UK, Starosta R, Kyzioł A, Jeżowska-Bojczuk M. Copper(i) complexes with phosphine derived from sparfloxacin. Part I - structures, spectroscopic properties and cytotoxicity. Dalton Trans 2016; 44:12688-99. [PMID: 26085118 DOI: 10.1039/c5dt01146a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper we present new copper(i) iodide or copper(i) thiocyanate complexes with hydroxymethyldiphenylphosphine (PPh2(CH2OH)) or phosphine derivatives of sparfloxacin, a 3(rd) generation fluoroquinolone antibiotic agent (PPh2(CH2-Sf)) and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) auxiliary ligands. The synthesised complexes were fully characterised by NMR and UV-Vis spectroscopy as well as by mass spectrometry. Selected structures were additionally analysed using X-ray and DFT methods. All complexes proved to be stable in solution in the presence of water and atmospheric oxygen for several days. The cytotoxic activity of the complexes was tested against two cancer cell lines (CT26 - mouse colon carcinoma and A549 - human lung adenocarcinoma). Applying two different incubation times, the studies enabled a preliminary estimation of the dependence of the selectivity and the mechanism of action on the type of diimine and phosphine ligands. The results obtained showed that complexes with PPh2(CH2-Sf) are significantly more active than those with PPh2(CH2OH). On the other hand, the relative impact of diimine on cytotoxicity is less pronounced. However, the dmp complexes are characterised by strong inhibitory properties, while the bq ones are rather not. This confirms the interesting and promising biological properties of the investigated group of copper(i) complexes, which undoubtedly are worthy of further biological studies.
Collapse
Affiliation(s)
- Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | | | | | | |
Collapse
|
19
|
Komarnicka UK, Starosta R, Płotek M, de Almeida RFM, Jeżowska-Bojczuk M, Kyzioł A. Copper(i) complexes with phosphine derived from sparfloxacin. Part II: a first insight into the cytotoxic action mode. Dalton Trans 2016; 45:5052-63. [DOI: 10.1039/c5dt04011f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A first insight into the cytotoxic action mode of copper(i) iodide or copper(i) thiocyanate complexes with a phosphine derivative of sparfloxacin (a 3rdgeneration fluoroquinolone antibiotic agent) and 2,9-dimethyl-1,10-phenanthroline or 2,2′-biquinoline as auxiliary ligands.
Collapse
Affiliation(s)
| | - R. Starosta
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - M. Płotek
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków
- Poland
| | - R. F. M. de Almeida
- Centro de Química e Bioquímica
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | | | - A. Kyzioł
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków
- Poland
| |
Collapse
|
20
|
Physical Activity Increases the Total Number of Bone-Marrow-Derived Mesenchymal Stem Cells, Enhances Their Osteogenic Potential, and Inhibits Their Adipogenic Properties. Stem Cells Int 2015; 2015:379093. [PMID: 26167185 PMCID: PMC4488015 DOI: 10.1155/2015/379093] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
Aging and sedentary lifestyle are common nowadays and are associated with the increasing number of chronic diseases. Thus, physical activity is recommended as one of three healthy behavior factors that play a crucial role in health prophylaxis. In the present study, we were interested whether physical activity influences the number and potential of bone-marrow-derived mesenchymal stem cells BMMSCs. In this study, four-week-old male C57Bl/6 mice were trained on a treadmill at progressive speeds over a 5-week period. Comparisons made between exercised (EX) and sedentary animal groups revealed (i) significantly higher number of MSCs in EX animals, (ii) elevated alkaline phosphatase (ALP) activity, (iii) increased level of osteopontin (OPN) and osteocalcin (OCL), and (iv) reduced marrow cavity fat. The results obtained support the thesis that EX may play a substantial role in the regeneration of mesenchymal tissues. Therefore, EX may represent a novel, nonpharmacological strategy of slowing down age-related decline of the musculoskeletal functions.
Collapse
|
21
|
Anti-thyroid and antifungal activities, BSA interaction and acid phosphatase inhibition of methimazole copper(II) complexes. Chem Biol Interact 2015; 229:64-72. [DOI: 10.1016/j.cbi.2014.12.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/09/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
|
22
|
Śmieszek A, Basińska K, Chrząstek K, Marycz K. In Vitro and In Vivo Effects of Metformin on Osteopontin Expression in Mice Adipose-Derived Multipotent Stromal Cells and Adipose Tissue. J Diabetes Res 2015; 2015:814896. [PMID: 26064989 PMCID: PMC4430663 DOI: 10.1155/2015/814896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 12/19/2022] Open
Abstract
Metformin is applied not only as antidiabetic drug, but also in the treatment of obesity or as antiaging drug. The first part of the research discussed the effect of metformin at concentrations of 1 mM, 5 mM, and 10 mM on the morphology, ultrastructure, and proliferation potential of mice adipose-derived multipotent mesenchymal stromal cells (ASCs) in vitro. Additionally, we determined the influence of metformin on mice adipose tissue metabolism. This study has shown for the first time that metformin inhibits the proliferative potential of ASCs in vitro in a dose- and time-dependent manner. In addition, we have found a significant correlation between the activity of ASCs and osteopontin at the mRNA and protein level. Furthermore, we have demonstrated that 5 mM and 10 mM metformin have cytotoxic effect on ASCs, causing severe morphological, ultrastructural, and apoptotic changes. The reduced level of OPN in the adipose tissue of metformin-treated animals strongly correlated with the lower expression of Ki67 and CD105 and increased caspase-3. The metformin influenced also circulating levels of OPN, which is what was found with systemic and local action of metformin. The results are a valuable source of information regarding the in vitro effect of metformin on adipose-derived stem cells.
Collapse
Affiliation(s)
- Agnieszka Śmieszek
- The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Kozuchowska 5b Street, 50-631 Wroclaw, Poland
- Wrocławskie Centrum Badań EIT+, Stablowicka 147 Street, 54-066 Wroclaw, Poland
| | - Katarzyna Basińska
- The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Kozuchowska 5b Street, 50-631 Wroclaw, Poland
| | - Klaudia Chrząstek
- The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Kozuchowska 5b Street, 50-631 Wroclaw, Poland
| | - Krzysztof Marycz
- The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Kozuchowska 5b Street, 50-631 Wroclaw, Poland
- Wrocławskie Centrum Badań EIT+, Stablowicka 147 Street, 54-066 Wroclaw, Poland
- *Krzysztof Marycz:
| |
Collapse
|
23
|
Lobana TS, Sandhu AK, Sultana R, Castineiras A, Butcher RJ, Jasinski JP. Coordination variability of CuIin multidonor heterocyclic thioamides: synthesis, crystal structures, luminescent properties and ESI-mass studies of complexes. RSC Adv 2014. [DOI: 10.1039/c4ra02748e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Starosta R, Bykowska A, Kyzioł A, Płotek M, Florek M, Król J, Jeżowska-Bojczuk M. Copper(I) (Pseudo)Halide Complexes with Neocuproine and Aminomethylphosphines Derived from Morpholine and Thiomorpholine -In VitroCytotoxic and Antimicrobial Activity and the Interactions with DNA and Serum Albumins. Chem Biol Drug Des 2013; 82:579-86. [DOI: 10.1111/cbdd.12187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Radosław Starosta
- Faculty of Chemistry; University of Wrocław; ul. F. Joliot-Curie 14; 50-383; Wrocław; Poland
| | - Aleksandra Bykowska
- Faculty of Chemistry; University of Wrocław; ul. F. Joliot-Curie 14; 50-383; Wrocław; Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry; Jagiellonian University; ul. R. Ingardena 3; 30-060; Kraków; Poland
| | - Michał Płotek
- Faculty of Chemistry; Jagiellonian University; ul. R. Ingardena 3; 30-060; Kraków; Poland
| | - Magdalena Florek
- Department of Veterinary Microbiology; Wroclaw University of Environmental and Life Sciences; ul. Norwida 31; 50-375; Wrocław; Poland
| | - Jarosław Król
- Department of Veterinary Microbiology; Wroclaw University of Environmental and Life Sciences; ul. Norwida 31; 50-375; Wrocław; Poland
| | | |
Collapse
|