1
|
Chen Z, Tang M, Chen X, Ding D, Gao JK, She Y, Yang YF. Using machine learning methods to predict the diabatic bond dissociation energy of non-heme iron complexes. Org Biomol Chem 2025; 23:4758-4767. [PMID: 40261048 DOI: 10.1039/d5ob00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Bond dissociation energy (BDE) is an important property in chemical research. In the process of non-heme iron complex catalytic reactions, diabatic BDE has a significant impact on the selectivity of halogenation and hydroxylation reactions. Measuring or calculating BDE by using traditional experimental or theoretical methods is often expensive and complex, so we propose the first application of machine learning on non-heme iron complexes to predict and rationalize the diabatic BDEs of Fe-X and Fe-OH bonds in order to assist in the study of selectivity in non-heme iron complex catalytic reactions. We built a reliable and representative dataset containing over 600 types of non-heme iron complexes and used density functional theory (DFT) to calculate nearly 900 diabatic BDE for machine learning. In terms of model training, we used 2D molecular fingerprints and 3D descriptors as inputs to train the regression model. The results indicate that the ensemble algorithm combined with Morgan fingerprints can effectively predict the diabatic BDEs of non-heme iron complexes. Using the Gradient Boosting Regressor (GBR) model and Morgan fingerprints can achieve an accurate prediction of R2 = 0.791 and the mean absolute error (MAE) = 10.23 kcal mol-1. The incorporation of 3D descriptors significantly improves the predictive performance of molecular fingerprints other than Morgan fingerprints. Notably, the SOAP descriptor effectively captures key 3D molecular information, making it particularly advantageous for predicting isomers with large ΔBDE. However, when the ΔBDE of isomers in the dataset is small, Morgan fingerprints remain the more efficient choice.
Collapse
Affiliation(s)
- Zhengwei Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Miaojiong Tang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Debo Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Jing-Kun Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Cu doped MnO2/γ-Al2O3: a facile and efficient catalyst for the degradation of Na2S in waste water under ambient conditions. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Gordon JB, Vilbert AC, DiMucci IM, MacMillan SN, Lancaster KM, Moënne-Loccoz P, Goldberg DP. Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. J Am Chem Soc 2019; 141:17533-17547. [PMID: 31647656 DOI: 10.1021/jacs.9b05274] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activation of dioxygen by FeII(Me3TACN)(S2SiMe2) (1) is reported. Reaction of 1 with O2 at -135 °C in 2-MeTHF generates a thiolate-ligated (peroxo)diiron complex FeIII2(O2)(Me3TACN)2(S2SiMe2)2 (2) that was characterized by UV-vis (λmax = 300, 390, 530, 723 nm), Mössbauer (δ = 0.53, |ΔEQ| = 0.76 mm s-1), resonance Raman (RR) (ν(O-O) = 849 cm-1), and X-ray absorption (XAS) spectroscopies. Complex 2 is distinct from the outer-sphere oxidation product 1ox (UV-vis (λmax = 435, 520, 600 nm), Mössbauer (δ = 0.45, |ΔEQ| = 3.6 mm s-1), and EPR (S = 5/2, g = [6.38, 5.53, 1.99])), obtained by one-electron oxidation of 1. Cleavage of the peroxo O-O bond can be initiated either photochemically or thermally to produce a new species assigned as an FeIV(O) complex, FeIV(O)(Me3TACN)(S2SiMe2) (3), which was identified by UV-vis (λmax = 385, 460, 890 nm), Mössbauer (δ = 0.21, |ΔEQ| = 1.57 mm s-1), RR (ν(FeIV═O) = 735 cm-1), and X-ray absorption spectroscopies, as well as reactivity patterns. Reaction of 3 at low temperature with H atom donors gives a new species, FeIII(OH)(Me3TACN)(S2SiMe2) (4). Complex 4 was independently synthesized from 1 by the stoichiometric addition of a one-electron oxidant and a hydroxide source. This work provides a rare example of dioxygen activation at a mononuclear nonheme iron(II) complex that produces both FeIII-O-O-FeIII and FeIV(O) species in the same reaction with O2. It also demonstrates the feasibility of forming Fe/O2 intermediates with strongly donating sulfur ligands while avoiding immediate sulfur oxidation.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Avery C Vilbert
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
4
|
Jasniewski AJ, Knoot CJ, Lipscomb JD, Que L. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase. Biochemistry 2016; 55:5818-5831. [PMID: 27668828 PMCID: PMC5258830 DOI: 10.1021/acs.biochem.6b00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first step in the nonribosomal peptide synthetase (NRPS)-based biosynthesis of chloramphenicol is the β-hydroxylation of the precursor l-p-aminophenylalanine (l-PAPA) catalyzed by the monooxygenase CmlA. The active site of CmlA contains a dinuclear iron cluster that is reduced to the diferrous state (WTR) to initiate O2 activation. However, rapid O2 activation occurs only when WTR is bound to CmlP, the NRPS to which l-PAPA is covalently attached. Here the X-ray crystal structure of WTR is reported, which is very similar to that of the as-isolated diferric enzyme in which the irons are coordinately saturated. X-ray absorption spectroscopy is used to investigate the WTR cluster ligand structure as well as the structures of WTR in complex with a functional CmlP variant (CmlPAT) with and without l-PAPA attached. It is found that formation of the active WTR:CmlPAT-l-PAPA complex converts at least one iron of the cluster from six- to five-coordinate by changing a bidentately bound amino acid carboxylate to monodentate on Fe1. The only bidentate carboxylate in the structure of WTR is E377. The crystal structure of the CmlA variant E377D shows only monodentate carboxylate coordination. Reduced E377D reacts rapidly with O2 in the presence or absence of CmlPAT-l-PAPA, showing loss of regulation. However, this variant fails to catalyze hydroxylation, suggesting that E377 has the dual role of coupling regulation of O2 reactivity with juxtaposition of the substrate and the reactive oxygen species. The carboxylate shift in response to substrate binding represents a novel regulatory strategy for oxygen activation in diiron oxygenases.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Cory J. Knoot
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
5
|
Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 2016; 21:605-18. [PMID: 27380180 PMCID: PMC4990465 DOI: 10.1007/s00775-016-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Lisa M Engstrom
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Van V Vu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Olivo G, Lanzalunga O, Di Stefano S. Non-Heme Imine-Based Iron Complexes as Catalysts for Oxidative Processes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201501024] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Flisak Z, Sun WH. Progression of Diiminopyridines: From Single Application to Catalytic Versatility. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00820] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zygmunt Flisak
- Key
Laboratory of Engineering Plastics and Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Faculty
of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Wen-Hua Sun
- Key
Laboratory of Engineering Plastics and Beijing
National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Bagi N, Kaizer J, Speier G. Oxidation of thiols to disulfides by dioxygen catalyzed by a bioinspired organocatalyst. RSC Adv 2015. [DOI: 10.1039/c5ra05529f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2,3-Dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2-λ5-oxazaphosphole serves as good catalyst for the oxidation of thiophenol, cysteine and glutathione to their disulfides by molecular oxygen.
Collapse
Affiliation(s)
- Nárcisz Bagi
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| | - József Kaizer
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| | - Gábor Speier
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| |
Collapse
|
9
|
Amini M, Arab A, Derakhshandeh PG, Bagherzadeh M, Ellern A, Woo LK. A novel iron complex containing an N,O-type bidentate oxazoline ligand: Synthesis, X-ray studies, DFT calculations and catalytic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 133:432-438. [PMID: 24973783 DOI: 10.1016/j.saa.2014.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/20/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
A five-coordinated Fe(III) complex with the distorted trigonal bipyramidal configuration was synthesized by reactions of FeCl3⋅6H2O and 2-(2'-hydroxyphenyl)oxazoline (Hphox) as a bidentate ON donor oxazoline ligand. Complex [Fe(phox)2Cl] was fully characterized, including by single-crystal X-ray structure analysis. DFT calculations were accompanied with experimental results in order to obtain a deeper insight into the electronic structure and vibrational normal modes of complex. Oxidation of sulfides to sulfoxides in one-step was conducted by this complex as catalyst using urea hydrogen peroxide (UHP) in mixture of CH2Cl2/CH3OH (1:1) under air at room temperature. The results show that using this system in oxidation of sulfides, sulfoxides are obtained as the main products, together with variable amounts of sulfones (≤13%), depending on the nature of the substrate.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.
| | - Ali Arab
- Department of Chemistry, Semnan University, P.O. Box 35351-19111, Semnan, Iran.
| | | | - Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran.
| | - Arkady Ellern
- Chemistry Department, Iowa State University, Ames, IA 50011-3111, USA
| | - L Keith Woo
- Chemistry Department, Iowa State University, Ames, IA 50011-3111, USA
| |
Collapse
|