1
|
Tosato M, Randhawa P, Lazzari L, McNeil BL, Dalla Tiezza M, Zanoni G, Mancin F, Orian L, Ramogida CF, Di Marco V. Tuning the Softness of the Pendant Arms and the Polyazamacrocyclic Backbone to Chelate the 203Pb/ 212Pb Theranostic Pair. Inorg Chem 2024; 63:1745-1758. [PMID: 38230993 PMCID: PMC10828988 DOI: 10.1021/acs.inorgchem.3c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Marianna Tosato
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Radiopharmaceutical
Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Parmissa Randhawa
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Luca Lazzari
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Brooke L. McNeil
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Marco Dalla Tiezza
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Giordano Zanoni
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Laura Orian
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Caterina F. Ramogida
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Valerio Di Marco
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
2
|
Tosato M, Pelosato M, Franchi S, Isse AA, May NV, Zanoni G, Mancin F, Pastore P, Badocco D, Asti M, Di Marco V. When ring makes the difference: coordination properties of Cu 2+/Cu + complexes with sulfur-pendant polyazamacrocycles for radiopharmaceutical applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj01032a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Cu2+/+ complexes formed by sulfur-containing polyazamacrocycles were studied in aqueous solution using potentiometry, UV-Vis, NMR, EPR, and cyclic voltammetry.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Matteo Pelosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Nóra Veronica May
- Centre for Structural Science, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Giordano Zanoni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
3
|
Tosato M, Asti M, Dalla Tiezza M, Orian L, Häussinger D, Vogel R, Köster U, Jensen M, Andrighetto A, Pastore P, Marco VD. Highly Stable Silver(I) Complexes with Cyclen-Based Ligands Bearing Sulfide Arms: A Step Toward Silver-111 Labeled Radiopharmaceuticals. Inorg Chem 2020; 59:10907-10919. [PMID: 32658468 PMCID: PMC8009516 DOI: 10.1021/acs.inorgchem.0c01405] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With a half-life of 7.45 days, silver-111 (βmax 1.04 MeV, Eγ 245.4 keV [Iγ 1.24%], Eγ 342.1 keV [Iγ 6.7%]) is a promising candidate for targeted cancer therapy with β- emitters as well as for associated SPECT imaging. For its clinical use, the development of suitable ligands that form sufficiently stable Ag+-complexes in vivo is required. In this work, the following sulfur-containing derivatives of tetraazacyclododecane (cyclen) have been considered as potential chelators for silver-111: 1,4,7,10-tetrakis(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO4S), (2S,5S,8S,11S)-2,5,8,11-tetramethyl-1,4,7,10-tetrakis(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO4S4Me), 1,4,7-tris(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris(2-(methylsulfanyl)ethyl)-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis(2-(methylsulfanyl)ethyl)-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). Natural Ag+ was used in pH/Ag-potentiometric and UV-vis spectrophotometric studies to determine the metal speciation existing in aqueous NaNO3 0.15 M at 25 °C and the equilibrium constants of the complexes, whereas NMR and DFT calculations gave structural insights. Overall results indicated that sulfide pendant arms coordinate Ag+ allowing the formation of very stable complexes, both at acidic and physiological pH. Furthermore, radiolabeling, stability in saline phosphate buffer, and metal-competition experiments using the two ligands forming the strongest complexes, DO4S and DO4S4Me, were carried out with [111Ag]Ag+ and promising results were obtained.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42122 Reggio Emilia, Italy
| | - Marco Dalla Tiezza
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056, Basel, Switzerland
| | - Raphael Vogel
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056, Basel, Switzerland
| | - Ulli Köster
- Institut Laue-Langevin, 71 avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - Mikael Jensen
- The Hevesy Laboratory, Department Health Technology, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Alberto Andrighetto
- Italian Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell'Università 2, 35020 Legnaro (Padova), Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Tosato M, Verona M, Doro R, Dalla Tiezza M, Orian L, Andrighetto A, Pastore P, Marzaro G, Di Marco V. Toward novel sulphur-containing derivatives of tetraazacyclododecane: synthesis, acid–base properties, spectroscopic characterization, DFT calculations, and cadmium( ii) complex formation in aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj00310g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New sulphur derivatives of cyclen, with potential complementary properties with respect to known compounds, have been synthesized and studied.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Marco Verona
- Department of Pharmaceutical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Riccardo Doro
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | | | - Laura Orian
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Alberto Andrighetto
- Italian Institute of Nuclear Physics
- Legnaro National Laboratories
- 35020 Legnaro (Padova)
- Italy
| | - Paolo Pastore
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Valerio Di Marco
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|
5
|
Kubíček V, Böhmová Z, Ševčíková R, Vaněk J, Lubal P, Poláková Z, Michalicová R, Kotek J, Hermann P. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies. Inorg Chem 2018; 57:3061-3072. [PMID: 29488748 DOI: 10.1021/acs.inorgchem.7b02929] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H3nota derivatives are among the most studied macrocyclic ligands and are widely used for metal ion binding in biology and medicine. Despite more than 40 years of chemical research on H3nota, the comprehensive study of its solution chemistry has been overlooked. Thus, the coordination behavior of H3nota with several divalent metal ions was studied in detail with respect to its application as a chelator for copper radioisotopes in medical imaging and therapy. In the solid-state structure of the free ligand in zwitterionic form, one proton is bound in the macrocyclic cavity through a strong intramolecular hydrogen-bond system supporting the high basicity of the ring amine groups (log Ka = 13.17). The high stability of the [Cu(nota)]- complex (log KML = 23.33) results in quantitative complex formation, even at pH <1.5. The ligand is moderately selective for Cu(II) over other metal ions (e.g., log KML(Zn) = 22.32 and log KML(Ni) = 19.24). This ligand forms a more stable complex with Mg(II) than with Ca(II) and forms surprisingly stable complexes with alkali-metal ions (stability order Li(I) > Na(I) > K(I)). Thus, H3nota shows high selectivity for small metal ions. The [Cu(nota)]- complex is hexacoordinated at neutral pH, and the equatorial N2O2 interaction is strengthened by complex protonation. Detailed kinetic studies showed that the Cu(II) complex is formed quickly (millisecond time scale at cCu ≈ 0.1 mM) through an out-of-cage intermediate. Conversely, conductivity measurements revealed that the Zn(II) complex is formed much more slowly than the Cu(II) complex. The Cu(II) complex has medium kinetic inertness (τ1/2 46 s; pH 0, 25 °C) and is less resistant to acid-assisted decomplexation than Cu(II) complexes with H4dota and H4teta. Surprisingly, [Cu(nota)]- decomplexation is decelerated in the presence of Zn(II) ions due to the formation of a stable dinuclear complex. In conclusion, H3nota is a good carrier of copper radionuclides because the [Cu(nota)]- complex is predominantly formed over complexes with common impurities in radiochemical formulations, Zn(II) and Ni(II), for thermodynamic and, primarily, for kinetic reasons. Furthermore, the in vivo stability of the [Cu(nota)]- complex may be increased due to the formation of dinuclear complexes when it interacts with biometals.
Collapse
Affiliation(s)
- Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Zuzana Böhmová
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Romana Ševčíková
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic
| | - Jakub Vaněk
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic.,Central European Institute of Technology (CEITEC) , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | - Přemysl Lubal
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic.,Central European Institute of Technology (CEITEC) , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | - Zuzana Poláková
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Romana Michalicová
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| |
Collapse
|
6
|
Ševčík R, Vaněk J, Michalicová R, Lubal P, Hermann P, Santos IC, Santos I, Campello MPC. Formation and decomplexation kinetics of copper(ii) complexes with cyclen derivatives having mixed carboxylate and phosphonate pendant arms. Dalton Trans 2018; 45:12723-33. [PMID: 27460053 DOI: 10.1039/c6dt01127f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The kinetic properties of Cu(ii) complexes of H4dota and its analogues with one (H5do3ap), two in the 1,7-position (trans-H6do2a2p), three (H7doa3p) and four (H8dotp) phosphonic acid pendant arms were investigated. The formation of a Cu(ii) complex with H4dota, trans-H6do2a2p and H8dotp at a slightly acidic pH is faster for the phosphonic acid derivatives than for H4dota, but with no simple dependence on the number of -CH2PO3H2 substituents (trans-H6do2a2p > H8dotp > H4dota; pH 4-6). Relative differences in the reactivity among the differently protonated species (HnL(x-)) of the same ligand are successively decreased with the more phosphonic acid groups in the ligand. The faster complexation is probably caused by the higher ability of phosphonates to bind the metal ion and/or to assist in the transfer of protons from the ring amine groups to the bulk water. The acid-assisted decomplexation kinetics of the complexes was followed in highly acidic solutions ([H(+)] = 0.01-5 M) and at different temperatures (15-70 °C) to determine the activation parameters of the reaction. The kinetic inertness of the Cu(ii) complexes follows the order: H4dota > H5do3ap > trans-H6do2a2p > H7doa3p > H8dotp. To obtain information on the influence of additional pendant arms, analogous data were obtained for trans-H2do2a. The ligand is less reactive than H4dota, but the kinetic inertness of its Cu(ii) complex is similar to that of the H4dota complex. As it was considered that the published thermodynamics data on the Cu(ii)-H8dotp system are probably incorrect, the system was re-investigated. It showed a very high stability for the [Cu(dotp)](6-) species and the easy formation of several Cu2L species in the presence of an excess of the metal ion. Also, the structure of the (H6doa3p)(-) anion in the solid state was determined. These experimental data demonstrate that the substitution of acetic acid pendant arms by methylphosphonic acid ones in H4dota-like ligands increases the rate of complexation but significantly decreases the kinetic inertness of the Cu(ii) complexes.
Collapse
Affiliation(s)
- R Ševčík
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - J Vaněk
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - R Michalicová
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - P Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - P Hermann
- Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University), Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - I C Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - I Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - M P C Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
7
|
Jarolímová Z, Vishe M, Lacour J, Bakker E. Potassium ion-selective fluorescent and pH independent nanosensors based on functionalized polyether macrocycles. Chem Sci 2016; 7:525-533. [PMID: 29896344 PMCID: PMC5952882 DOI: 10.1039/c5sc03301b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/07/2015] [Indexed: 12/30/2022] Open
Abstract
We present here a new family of pH insensitive ion-selective optical sensors based on emulsified nanospheres containing densely functionalized 15-, 16-, 18- and 20-membered pyreneamide derivatives. These compounds were successfully synthesized by the reaction of α-diazo-β-ketoesters with cyclic ethers of the desired size in the presence of dirhodium complexes followed by a stereo-selective tandem amidation-transposition process and characterized by 1H-NMR, 13C-NMR, IR, HR-ESI-MS, UV-VIS and fluorescence spectroscopy and potentiometry. Their unique structure consisting of a crown ether ring linked to pyrene moieties through amide groups exhibits on-off switchable behavior upon binding of specific cations and allows one to incorporate these chemosensors as fluorescent ionophores into ion-exchange nanospheres. The nanosphere matrix is composed of bis(2-ethylhexyl)sebacate (DOS), poly(ethylene glycol) (PEG), sodium tetrakis 3,5-bis(trifluoromethyl)phenyl borate and pyreneamide functionalized 18-crown-6 ether (18C6). These optode nanoparticles exhibit a strong affinity to the potassium cation over other metal ions up to the millimolar concentration range in an exhaustive detection mode. The logarithmic complex formation constant was determined using the segmented sandwich membrane method and was found to be 6.5 ± 0.3 (SD) in PVC membrane plasticized with NPOE and 5.3 ± 0.3 (SD) in DOS with a 1 : 1 complex stoichiometry. The nanosensors were characterized in broad range of pH from 4 to 10 and the same linear calibration curves were obtained in the concentration range from 10-7 M to 10-5 M and thus the pH dependent response was largely overcome. These nanosensors are sufficiently stable, simple to prepare, exhibit a rapid response and their nanoscale size makes them suitable for sensing purposes in samples of limited dimensions.
Collapse
Affiliation(s)
- Zdeňka Jarolímová
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland .
| | - Mahesh Vishe
- Department of Organic Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland .
| | - Jérôme Lacour
- Department of Organic Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland .
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland .
| |
Collapse
|
8
|
Ševčík R, Vaněk J, Lubal P, Kotková Z, Kotek J, Hermann P. Formation and dissociation kinetics of copper(II) complexes with tetraphosphorus acid DOTA analogs. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|