1
|
Uzal-Varela R, Patinec V, Tripier R, Valencia L, Maneiro M, Canle M, Platas-Iglesias C, Esteban-Gómez D, Iglesias E. On the dissociation pathways of copper complexes relevant as PET imaging agents. J Inorg Biochem 2022; 236:111951. [PMID: 35963110 DOI: 10.1016/j.jinorgbio.2022.111951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Several bifunctional chelators have been synthesized in the last years for the development of new 64Cu-based PET agents for in vivo imaging. When designing a metal-based PET probe, it is important to achieve high stability and kinetic inertness once the radioisotope is coordinated. Different competitive assays are commonly used to evaluate the possible dissociation mechanisms that may induce Cu(II) release in the body. Among them, acid-assisted dissociation tests or transchelation challenges employing EDTA or SOD are frequently used to evaluate both solution thermodynamics and the kinetic behavior of potential metal-based systems. Despite of this, the Cu(II)/Cu(I) bioreduction pathway that could be promoted by the presence of bioreductants still remains little explored. To fill this gap we present here a detailed spectroscopic study of the kinetic behavior of different macrocyclic Cu(II) complexes. The complexes investigated include the cross-bridge cyclam derivative [Cu(CB-TE1A)]+, whose structure was determined using single-crystal X-ray diffraction. The acid-assisted dissociation mechanism was investigated using HClO4 and HCl to analyse the effect of the counterion on the rate constants. The complexes were selected so that the effects of complex charge and coordination polyhedron could be assessed. Cyclic voltammetry experiments were conducted to investigate whether the reduction to Cu(I) falls within the window of common bioreducing agents. The most striking behavior concerns the [Cu(NO2Th)]2+ complex, a 1,4,7-triazacyclononane derivative containing two methylthiazolyl pendant arms. This complex is extremely inert with respect to dissociation following the acid-catalyzed mechanism, but dissociates rather quickly in the presence of a bioreductant like ascorbic acid.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Laura Valencia
- Departamento de Química Inorgánica, Universidade de Vigo, Facultad de Ciencias, 36310 Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Facultade de Ciencias, 27002 Lugo, Spain
| | - Moisés Canle
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain.
| | - Emilia Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain.
| |
Collapse
|
2
|
Tosato M, Lazzari L, Marco VD. Revisiting Lead(II)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic Acid Coordination Chemistry in Aqueous Solutions: Evidence of an Underestimated Thermodynamic Stability. ACS OMEGA 2022; 7:15596-15602. [PMID: 35571797 PMCID: PMC9096932 DOI: 10.1021/acsomega.2c00387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The complexes formed between Pb2+ and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were reinvestigated in aqueous solutions using a combination of pH potentiometry, UV-vis spectroscopy, and NMR spectroscopy. The thermodynamic data were supported by kinetics assays. Differently protonated complexes, i.e., [PbH3L]+, [PbH2L], [PbHL]-, and [PbL]2-, were detected, and the corresponding stability constants (logβ) at T = 298 K and I = 0.1 M NaCl were 33.1 ± 0.2, 32.00 ± 0.06, 29.28 ± 0.06, and 25.3 ± 0.1, respectively. Results differed significantly from those previously reported by Chaves et al. (Talanta1992, 39, 249) and Pippin et al. (Inorg. Chim. Acta1995, 239, 43) in both the speciation and the overall complex stability; the latter in particular was found to be remarkably higher. The work disclosed herein provides revised data on the Pb2+-DOTA complexes, which should be used as a new stability benchmark during the development of lead chelators.
Collapse
|
3
|
Kotuniak R, Bal W. Kinetics of Cu(II) complexation by ATCUN/NTS and related peptides: a gold mine of novel ideas for copper biology. Dalton Trans 2021; 51:14-26. [PMID: 34816848 DOI: 10.1039/d1dt02878b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cu(II)-peptide complexes are intensely studied as models for biological peptides and proteins and for their direct importance in copper homeostasis and dyshomeostasis in human diseases. In particular, high-affinity ATCUN/NTS (amino-terminal copper and nickel/N-terminal site) motifs present in proteins and peptides are considered as Cu(II) transport agents for copper delivery to cells. The information on the affinities and structures of such complexes derived from steady-state methods appears to be insufficient to resolve the mechanisms of copper trafficking, while kinetic studies have recently shown promise in explaining them. Stopped-flow experiments of Cu(II) complexation to ATCUN/NTS peptides revealed the presence of reaction steps with rates much slower than the diffusion limit due to the formation of novel intermediate species. Herein, the state of the field in Cu(II)-peptide kinetics is reviewed in the context of physiological data, leading to novel ideas in copper biology, together with the discussion of current methodological issues.
Collapse
Affiliation(s)
- Radosław Kotuniak
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
4
|
Tosato M, Dalla Tiezza M, May NV, Isse AA, Nardella S, Orian L, Verona M, Vaccarin C, Alker A, Mäcke H, Pastore P, Di Marco V. Copper Coordination Chemistry of Sulfur Pendant Cyclen Derivatives: An Attempt to Hinder the Reductive-Induced Demetalation in 64/67Cu Radiopharmaceuticals. Inorg Chem 2021; 60:11530-11547. [PMID: 34279088 PMCID: PMC8389837 DOI: 10.1021/acs.inorgchem.1c01550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu2+ complexes formed by a series of cyclen derivatives bearing sulfur pendant arms, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis[2-(methylsulfanyl)ethyl]-4,10-diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S), were studied in aqueous solution at 25 °C from thermodynamic and structural points of view to evaluate their potential as chelators for copper radioisotopes. UV-vis spectrophotometric out-of-cell titrations under strongly acidic conditions, direct in-cell UV-vis titrations, potentiometric measurements at pH >4, and spectrophotometric Ag+-Cu2+ competition experiments were performed to evaluate the stoichiometry and stability constants of the Cu2+ complexes. A highly stable 1:1 metal-to-ligand complex (CuL) was found in solution at all pH values for all chelators, and for DO2A2S, protonated species were also detected under acidic conditions. The structures of the Cu2+ complexes in aqueous solution were investigated by UV-vis and electron paramagnetic resonance (EPR), and the results were supported by relativistic density functional theory (DFT) calculations. Isomers were detected that differed from their coordination modes. Crystals of [Cu(DO4S)(NO3)]·NO3 and [Cu(DO2A2S)] suitable for X-ray diffraction were obtained. Cyclic voltammetry (CV) experiments highlighted the remarkable stability of the copper complexes with reference to dissociation upon reduction from Cu2+ to Cu+ on the CV time scale. The Cu+ complexes were generated in situ by electrolysis and examined by NMR spectroscopy. DFT calculations gave further structural insights. These results demonstrate that the investigated sulfur-containing chelators are promising candidates for application in copper-based radiopharmaceuticals. In this connection, the high stability of both Cu2+ and Cu+ complexes can represent a key parameter for avoiding in vivo demetalation after bioinduced reduction to Cu+, often observed for other well-known chelators that can stabilize only Cu2+.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Dalla Tiezza
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok Körútja 2, 1117 Budapest, Hungary
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Sonia Nardella
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.,Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Verona
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - André Alker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche, Grenzacherstrasse 124, 4058 Basel, Switzerland
| | - Helmut Mäcke
- Department of Nuclear Medicine, University Hospital Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Tosato M, Verona M, Doro R, Dalla Tiezza M, Orian L, Andrighetto A, Pastore P, Marzaro G, Di Marco V. Toward novel sulphur-containing derivatives of tetraazacyclododecane: synthesis, acid–base properties, spectroscopic characterization, DFT calculations, and cadmium( ii) complex formation in aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj00310g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New sulphur derivatives of cyclen, with potential complementary properties with respect to known compounds, have been synthesized and studied.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Marco Verona
- Department of Pharmaceutical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Riccardo Doro
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | | | - Laura Orian
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Alberto Andrighetto
- Italian Institute of Nuclear Physics
- Legnaro National Laboratories
- 35020 Legnaro (Padova)
- Italy
| | - Paolo Pastore
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Valerio Di Marco
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|
6
|
Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 2018; 45:15702-15724. [PMID: 26865360 DOI: 10.1039/c5dt04706d] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key part of the development of metal based Positron Emission Tomography probes is the chelation of the radiometal. In this review the recent developments in the chelation of four positron emitting radiometals, 68Ga, 64Cu, 89Zr and 44Sc, are explored. The factors that effect the chelation of each radio metal and the ideal ligand system will be discussed with regards to high in vivo stability, complexation conditions, conjugation to targeting motifs and complexation kinetics. A series of cyclic, cross-bridged and acyclic ligands will be discussed, such as CP256 which forms stable complexes with 68Ga under mild conditions and PCB-TE2A which has been shown to form a highly stable complex with 64Cu. 89Zr and 44Sc have seen significant development in recent years with a number of chelates being applied to each metal - eight coordinate di-macrocyclic terephthalamide ligands were found to rapidly produce more stable complexes with 89Zr than the widely used DFO.
Collapse
Affiliation(s)
- Thomas W Price
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| | - John Greenman
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK.
| | - Graeme J Stasiuk
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| |
Collapse
|
7
|
Ševčík R, Vaněk J, Michalicová R, Lubal P, Hermann P, Santos IC, Santos I, Campello MPC. Formation and decomplexation kinetics of copper(ii) complexes with cyclen derivatives having mixed carboxylate and phosphonate pendant arms. Dalton Trans 2018; 45:12723-33. [PMID: 27460053 DOI: 10.1039/c6dt01127f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The kinetic properties of Cu(ii) complexes of H4dota and its analogues with one (H5do3ap), two in the 1,7-position (trans-H6do2a2p), three (H7doa3p) and four (H8dotp) phosphonic acid pendant arms were investigated. The formation of a Cu(ii) complex with H4dota, trans-H6do2a2p and H8dotp at a slightly acidic pH is faster for the phosphonic acid derivatives than for H4dota, but with no simple dependence on the number of -CH2PO3H2 substituents (trans-H6do2a2p > H8dotp > H4dota; pH 4-6). Relative differences in the reactivity among the differently protonated species (HnL(x-)) of the same ligand are successively decreased with the more phosphonic acid groups in the ligand. The faster complexation is probably caused by the higher ability of phosphonates to bind the metal ion and/or to assist in the transfer of protons from the ring amine groups to the bulk water. The acid-assisted decomplexation kinetics of the complexes was followed in highly acidic solutions ([H(+)] = 0.01-5 M) and at different temperatures (15-70 °C) to determine the activation parameters of the reaction. The kinetic inertness of the Cu(ii) complexes follows the order: H4dota > H5do3ap > trans-H6do2a2p > H7doa3p > H8dotp. To obtain information on the influence of additional pendant arms, analogous data were obtained for trans-H2do2a. The ligand is less reactive than H4dota, but the kinetic inertness of its Cu(ii) complex is similar to that of the H4dota complex. As it was considered that the published thermodynamics data on the Cu(ii)-H8dotp system are probably incorrect, the system was re-investigated. It showed a very high stability for the [Cu(dotp)](6-) species and the easy formation of several Cu2L species in the presence of an excess of the metal ion. Also, the structure of the (H6doa3p)(-) anion in the solid state was determined. These experimental data demonstrate that the substitution of acetic acid pendant arms by methylphosphonic acid ones in H4dota-like ligands increases the rate of complexation but significantly decreases the kinetic inertness of the Cu(ii) complexes.
Collapse
Affiliation(s)
- R Ševčík
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - J Vaněk
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - R Michalicová
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - P Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - P Hermann
- Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University), Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - I C Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - I Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - M P C Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
8
|
Moreno S, Ortega P, de la Mata FJ, Ottaviani MF, Cangiotti M, Fattori A, Muñoz-Fernández MÁ, Gómez R. Bifunctional Chelating Agents Based on Ionic Carbosilane Dendrons with DO3A at the Focal Point and Their Complexation Behavior with Copper(II). Inorg Chem 2015; 54:8943-56. [DOI: 10.1021/acs.inorgchem.5b01047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Silvia Moreno
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Paula Ortega
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Francisco Javier de la Mata
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Maria Francesca. Ottaviani
- Departments
of Earth, Life and Environment Sciences, University of Urbino, Via Ca’ le Suore 2/4, Urbino 61029, Italy
| | - Michela Cangiotti
- Departments
of Earth, Life and Environment Sciences, University of Urbino, Via Ca’ le Suore 2/4, Urbino 61029, Italy
| | - Alberto Fattori
- Departments
of Earth, Life and Environment Sciences, University of Urbino, Via Ca’ le Suore 2/4, Urbino 61029, Italy
| | - María Ángeles Muñoz-Fernández
- Laboratorio
de Inmunobiologia Molecular, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| | - Rafael Gómez
- Departamento
de Química Orgánica e Inorgánica, Universidad de Alcalá, Edificio de Farmacia 28871, Alcalá de Henares, Spain
- Spain/Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Poeta Mariano Esquillor s/n 50018, Zaragoza, Spain
| |
Collapse
|