1
|
Liu XL, Li Y, Wang H, Yang YY, Liu H, Wu XT, Sheng TL. Chain-Like Pentanuclear Complexes: Syntheses, Crystal Structures and Long-Range Electronic Interactions of Cyanido-Bridged M 2Ru 3 (M=Fe, Ru). Chemistry 2025; 31:e202402771. [PMID: 39462195 DOI: 10.1002/chem.202402771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
In this work, we report the design and synthesis of two chain-like pentanuclear cyanido-bridged complexes trans-[Ru(bpy)2(μ-CN)2][cis-Ru(bpy)2(μ-NC)M(dppe)Cp*]2[PF6]4 (M=Fe, 14+; M=Ru, 24+) and the electronic communication properties of their oxidized products 1m+ (m=6, 7, 8) and 2n+ (n=5, 6, 7, 8). The single-crystal X-ray diffraction analysis of 1m+ (m=4, 6, 7) and 24+ show that 14+ and 24+ possess a Z-type array structure, 17+ is a U-type one, and 16+ exhibits both the types. The investigations indicate that both 1 and 2 show an extraordinarily strong electronic interaction between the two side Ru across the central NC-Ru-CN, leading to the formation of a fully delocalized cyanidometal Ru-Ru-Ru bridge for both three-electron oxidized states 17+ and 27+. Moreover, it should be noted that in 1 there exists no electronic interaction between the two terminal Fe ions. Upon substitution of Fe by Ru, however, 2 exhibits an electronic interaction between the two terminal metal ions across the trinuclear cyanidometal CN-Ru-NC-Ru-CN-Ru-NC bridge which is up to 20 Å.
Collapse
Affiliation(s)
- Xiao-Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P. R. China
| | - Hao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P. R. China
| | - Yu-Ying Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P. R. China
| | - Han Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P. R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
2
|
Murai M, Ono M, Tanaka Y, Akita M. Controlling Redox and Wirelike Charge-Delocalization Properties of Dinuclear Mixed-Valence Complexes with MCp*(dppe) (M = Fe, Ru) Termini Bridged by Metalloporphyrin Linkers. ACS ORGANIC & INORGANIC AU 2024; 4:504-516. [PMID: 39371324 PMCID: PMC11450764 DOI: 10.1021/acsorginorgau.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 10/08/2024]
Abstract
Four dinuclear organometallic molecular wire complexes with diethynylmetalloporphyrin linkers 1 MM' , [5,15-bis{MCp*(dppe)ethynyl}-10,20-diarylporphinato]M' (Cp* = η5-C5Me5; dppe = 1,2-bis(diphenylphosphino)ethane; M/M' = Fe/Zn (1 FeZn ), Ru/Zn (1 RuZn ), Fe/Ni (1 FeNi ), Ru/Ni (1 RuNi ); aryl = 3,5-di-tert-butylphenyl), are synthesized and characterized by NMR, CV, UV-vis-NIR, and ESI-TOF mass spectrometry techniques. Electrochemical investigations combined with electronic absorption spectroscopic studies reveal strong interactions among the electron-donating, redox-active MCp*(dppe) termini and the metalloporphyrin moieties. The monocationic species of the four complexes obtained by chemical oxidation have been characterized as mixed-valence Class II/III or Class III compounds according to the Robin-Day classification despite the long molecular dimension (>1.5 nm), as demonstrated by their intense intervalence charge transfer bands (IVCT) in the near IR region. DFT calculations indicate large spin densities on the metalloporphyrin moieties. Furthermore, the wirelike performance can be finely tuned by coordination of appropriate nitrogen donors to the axial sites of the metalloporphyrin.
Collapse
Affiliation(s)
| | - Masanori Ono
- Laboratory for Chemistry
and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry
and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry
and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
3
|
Cobb CR, Ngo RK, Dick EJ, Lynch VM, Rose MJ. Multi-phosphine-chelated iron-carbide clusters via redox-promoted ligand exchange on an inert hexa-iron-carbide carbonyl cluster, [Fe 6(μ 6-C)(μ 2-CO) 4(CO) 12] 2. Chem Sci 2024; 15:11455-11471. [PMID: 39055015 PMCID: PMC11268514 DOI: 10.1039/d4sc01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 07/27/2024] Open
Abstract
We report the reactivity, structures and spectroscopic characterization of reactions of phosphine-based ligands (mono-, di- and tri-dentate) with iron-carbide carbonyl clusters. Historically, the archetype of this cluster class, namely [Fe6(μ6-C)(μ2-CO)4(CO)12]2-, can be prepared on a gram-scale but is resistant to simple ligand substitution reactions. This limitation has precluded the relevance of iron-carbide clusters relating to organometallics, catalysis and the nitrogenase active site cluster. Herein, we aimed to derive a simple and reliable method to accomplish CO → L (where L = phosphine or other general ligands) substitution reactions without harsh reagents or multi-step synthetic strategies. Ultimately, our goal was ligand-based chelation of an Fe n (μ n -C) core to achieve more synthetic control over multi-iron-carbide motifs relevant to the nitrogenase active site. We report that the key intermediate is the PSEPT-non-conforming cluster [Fe6(μ6-C)(CO)16] (2: 84 electrons), which can be generated in situ by the outer-sphere oxidation of [Fe6(μ6-C)(CO)16]2- (1: closo, 86 electrons) with 2 equiv. of [Fc]PF6. The reaction of 2 with excess PPh3 generates a singly substituted neutral cluster [Fe5(μ5-C)(CO)14PPh3] (4), similar to the reported reactivity of the substitutionally active cluster [Fe5(μ5-C)(CO)15] with monodentate phosphines (Cooke & Mays, 1990). In contrast, the reaction of 2 with flexible, bidentate phosphines (DPPE and DPPP) generates a wide range of unisolable products. However, the rigid bidentate phosphine bis(diphenylphosphino)benzene (bdpb) disproportionates the cluster into non-ligated Fe3-carbide anions paired with a bdpb-supported Fe(ii) cation, which co-crystallize in [Fe3(μ3-CH)(μ3-CO)(CO)9]2[Fe(MeCN)2(bdpb)2] (6). A successful reaction of 2 with the tripodal ligand Triphos generates the first multi-iron-chelated, authentic carbide cluster of the formula [Fe4(μ4-C)(κ3-Triphos)(CO)10] (9). DFT analysis of the key (oxidized) intermediate 2 suggests that its (μ6-C)Fe6 framework remains fully intact but is distorted into an axially compressed, 'ruffled' octahedron distinct from the parent closo cluster 1. Oxidation of the cluster in non-coordinating solvent allows for the isolation and crystallization of the CO-saturated, intact closo-analogue [Fe6(μ6-C)(CO)17] (3), indicating that the intact (μ6-C)Fe6 motif is retained during initial oxidation with [Fc]PF6. Overall, we demonstrate that redox modulation beneficially 'bends' Wade-Mingo's rules via the generation of electron-starved (non-PSEPT) intermediates, which are the key intermediates in promoting facile CO → L substitution reactions in iron-carbide-carbonyl clusters.
Collapse
Affiliation(s)
- Caitlyn R Cobb
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Ren K Ngo
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Emily J Dick
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
4
|
Arora A, Baksi SD, Weisbach N, Amini H, Bhuvanesh N, Gladysz JA. Monodisperse Molecular Models for the sp Carbon Allotrope Carbyne; Syntheses, Structures, and Properties of Diplatinum Polyynediyl Complexes with PtC20Pt to PtC52Pt Linkages. ACS CENTRAL SCIENCE 2023; 9:2225-2240. [PMID: 38161378 PMCID: PMC10755852 DOI: 10.1021/acscentsci.3c01090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024]
Abstract
Extended conjugated polyynes provide models for the elusive sp carbon polymer carbyne, but progress has been hampered by numerous synthetic challenges. Stabilities appear to be enhanced by bulky, electropositive transition-metal endgroups. Reactions of trans-(C6F5)(p-tol3P)2Pt(C≡C)nSiEt3 (n = 4-6, PtCxSi (x = 2n)) with n-Bu4N+F-/Me3SiCl followed by excess tetrayne H(C≡C)4SiEt3 (HC8Si) and then CuCl/TMEDA and O2 give the heterocoupling products PtCx+8Si, PtCx+16Si, and sometimes higher homologues. The PtCx+16Si species presumably arise via protodesilylation of PtCx+8Si under the reaction conditions. Chromatography allows the separation of PtC16Si, PtC24Si, and PtC32Si (from n = 4), PtC18Si and PtC26Si (n = 5), or PtC20Si and PtC28Si (n = 6). These and previously reported species are applied in similar oxidative homocouplings, affording the family of diplatinum polyynediyl complexes PtCxPt (x = 20, 24, 28, 32, 36, 40 in 96-34% yields and x = 44, 48, 52 in 22-7% yields). These are carefully characterized by 13C NMR, UV-visible, and Raman spectroscopy and other techniques, with particular attention to behavior as the Cx chain approaches the macromolecular limit and endgroup effects diminish. The crystal structures of solvates of PtC20Pt, PtC24Pt, and PtC26Si, which feature the longest sp chains structurally characterized to date, are analyzed in detail. All data support a polyyne electronic structure with a nonzero optical band gap and bond length alternation for carbyne.
Collapse
Affiliation(s)
| | | | - Nancy Weisbach
- Department of Chemistry, Texas
A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United
States
| | - Hashem Amini
- Department of Chemistry, Texas
A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United
States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas
A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United
States
| | - John A. Gladysz
- Department of Chemistry, Texas
A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United
States
| |
Collapse
|
5
|
Abstract
The formation and study of molecules that model the sp-hybridized carbon allotrope, carbyne, is a challenging field of synthetic physical organic chemistry. The target molecules, oligo- and polyynes, are often the preferred candidates as models for carbyne because they can be formed with monodisperse lengths as well as defined structures. Despite a simple linear structure, the synthesis of polyynes is often far from straightforward, due in large part to a highly conjugated framework that can render both precursors and products highly reactive, i.e., kinetically unstable. The vast majority of polyynes are formed as symmetrical products from terminal alkynes as precursors via an oxidative, acetylenic homocoupling reaction based on the Glaser, Eglinton-Galbraith, and Hay reactions. These reactions are very efficient for the synthesis of shorter polyynes (e.g., hexaynes and octaynes), but yields often drop dramatically as a function of length for longer derivatives, usually starting with the formation of decaynes. The most effective approach to circumvent unstable precursors and products has been through the incorporation of sterically demanding end groups that serve to "protect" the polyyne skeleton. This approach was arguably identified in the early 1950s by Bohlmann and co-workers with the synthesis of tBu-end-capped polyynes. During the next 50 years, a polyyne with 14 contiguous alkyne units remained the longest isolated derivative until 2010, when the record was extended to 22 alkyne units. The record length was broken again in 2020, when a polyyne consisting of 24 alkynes was isolated and characterized. Beyond polyynes, there have been several reports describing the potential synthesis of carbyne, but conclusive characterization and proof of structure have been tenuous. The sole example of synthetic carbyne arises from synthesis within carbon nanotubes, when chains of thousands of sp carbon atoms have been linked to form polydisperse samples of carbyne. Thus, model compounds for carbyne, the polyynes, remain the best means to examine and predict the experimental structure and properties of this carbon allotrope.This Account will discuss the general synthesis of polyynes using homologous series of polyynes with up to 10 alkyne units as examples (decaynes). The limited number of specific syntheses of series with longer polyynes will then be presented and discussed in more detail based on end groups. The monodisperse polyynes produced from these synthetic efforts are then examined toward providing our best extrapolations for the expected characteristics for carbyne based on 13C NMR spectroscopy, UV-vis spectroscopy, X-ray crystallography, and Raman spectroscopy.
Collapse
Affiliation(s)
- Yueze Gao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Leong TX, Collins BK, Dey Baksi S, Mackin RT, Sribnyi A, Burin AL, Gladysz JA, Rubtsov IV. Tracking Energy Transfer across a Platinum Center. J Phys Chem A 2022; 126:4915-4930. [PMID: 35881911 PMCID: PMC9358659 DOI: 10.1021/acs.jpca.2c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Rigid, conjugated alkyne bridges serve as important components
in various transition-metal complexes used for energy conversion,
charge separation, sensing, and molecular electronics. Alkyne stretching
modes have potential for modulating charge separation in donor–bridge–acceptor
compounds. Understanding the rules of energy relaxation and energy
transfer across the metal center in such compounds can help optimize
their electron transfer switching properties. We used relaxation-assisted
two-dimensional infrared spectroscopy to track energy transfer across
metal centers in platinum complexes featuring a triazole-terminated
alkyne ligand of two or six carbons, a perfluorophenyl ligand, and
two tri(p-tolyl)phosphine ligands. Comprehensive
analyses of waiting-time dynamics for numerous cross and diagonal
peaks were performed, focusing on coherent oscillation, energy transfer,
and cooling parameters. These observables augmented with density functional
theory computations of vibrational frequencies and anharmonic force
constants enabled identification of different functional groups of
the compounds. Computations of vibrational relaxation pathways and
mode couplings were performed, and two regimes of intramolecular energy
redistribution are described. One involves energy transfer between
ligands via high-frequency modes; the transfer is efficient only if
the modes involved are delocalized over both ligands. The energy transport
pathways between the ligands are identified. Another regime involves
redistribution via low-frequency delocalized modes, which does not
lead to interligand energy transport.
Collapse
Affiliation(s)
- Tammy X Leong
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Brenna K Collins
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Sourajit Dey Baksi
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Robert T Mackin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Artem Sribnyi
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
7
|
|
8
|
Harrison DP, Kumar VJ, Noppers JN, Gluyas JBG, Sobolev AN, Moggach SA, Low PJ. Iron vs. ruthenium: syntheses, structures and IR spectroelectrochemical characterisation of half-sandwich Group 8 acetylide complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj03093g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A synthetic ‘trick’ affording complexes [M(CCR)(dppe)Cp′] (M = Fe, Ru) in high purity directly from the reaction vessel is described.
Collapse
Affiliation(s)
- Daniel P. Harrison
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Varshini J. Kumar
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Johanna N. Noppers
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Josef B. G. Gluyas
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Stephen A. Moggach
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Paul J. Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
9
|
Amini H, Baranová Z, Weisbach N, Gauthier S, Bhuvanesh N, Reibenspies JH, Gladysz JA. Syntheses, Structures, and Spectroscopic Properties of 1,10-Phenanthroline-Based Macrocycles Threaded by PtC 8 Pt, PtC 12 Pt, and PtC 16 Pt Axles: Metal-Capped Rotaxanes as Insulated Molecular Wires. Chemistry 2019; 25:15896-15914. [PMID: 31596000 DOI: 10.1002/chem.201903927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/01/2019] [Indexed: 11/05/2022]
Abstract
The platinum polyynyl complexes trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)n/2 H undergo oxidative homocoupling (O2 , CuCl/TMEDA) to diplatinum polyynediyl complexes trans, trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)n Pt(Pp-tol3 )2 (C6 F5 ) (n=4, 2; 6, 5; 8, 8; 92-97 %) as reported previously. When related reactions are conducted in the presence of CuI adducts of the 1,10-phenanthroline-based macrocycles 2,9-(1,10-phenanthrolinediyl)(p-C6 H4 O(CH2 )6 O)2 (1,3-C6 H4 ) (10, 33-membered) or 2,9-(1,10-phenanthrolinediyl)(p-C6 H4 O(CH2 )6 O)2 (2,7-naphthalenediyl) (11, 35-membered), excess K2 CO3 , and I2 (oxidant), rotaxanes are isolated that feature a Pt(C≡C)n Pt axle that has been threaded through the macrocycle (2⋅10, 9 %; 5⋅10, 41 %; 5⋅11, 28 %; 8⋅10, 12 %; 8⋅11, 9 %). Their crystal structures are determined and analyzed in detail, particularly with respect to geometric perturbations and the degree of steric sp carbon chain insulation. NMR spectra show a number of shielding effects. UV/Vis spectra do not indicate significant electronic interactions between the Pt(C≡C)n Pt axles and macrocycles, although cyclic voltammetry data suggest rapid reactions following oxidation.
Collapse
Affiliation(s)
- Hashem Amini
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Zuzana Baranová
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Nancy Weisbach
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Sébastien Gauthier
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA
| |
Collapse
|
10
|
Bartlett MJ, Frogley BJ, Hill AF, Sharma M, Smith MK, Ward JS. Hydrogenating an organometallic carbon chain: buten-yn-diyl (CH[double bond, length as m-dash]CHC[triple bond, length as m-dash]C) as a missing link. Dalton Trans 2019; 48:16534-16554. [PMID: 31576871 DOI: 10.1039/c9dt03229k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sequential reaction of [Ru(C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH)Cl(CO)2(PPh3)2] with [Ru(CO)2(PPh3)3], and N-chlorosuccinimide affords the binuclear tetracarbido complex [Ru2(μ-C[triple bond, length as m-dash]CC[triple bond, length as m-dash]C)Cl2(CO)4(PPh3)4]. This may be compared with the first example of a butenyndiyl bridged bimetallic complex [Ru2(μ-CH[double bond, length as m-dash]CHC[triple bond, length as m-dash]C)Cl2(CO)4(PPh3)4] which is obtained from the reaction of [Ru(C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH)Cl(CO)2(PPh3)2] with [RuHCl(CO)(PPh3)3] followed by carbonylation. Characterisational data are discussed with reference to constituent model complexes [Ru(C[triple bond, length as m-dash]CH)Cl(CO)2(PPh3)2] and [Ru(CH[double bond, length as m-dash]CH2)Cl(CO)2(PPh3)2] in addition to DFT analysis of the bonding in the complexes [Ru2(μ-L)Cl2(CO)4(PMe3)4] (L = C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C, CH[double bond, length as m-dash]CHC[triple bond, length as m-dash]C, CH[double bond, length as m-dash]CH-CH[double bond, length as m-dash]CH). A range of other tetracarbido complexes which may be prepared from [RuCl(C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH)(CO)2(PPh3)2] is also described and includes [RuAu(μ-C4)Cl(CO)3(PPh3)3], [RuIr(μ-C4)Cl(CO)3(PPh3)4], [RuIr(μ-C4)H(NCMe)(CO)3(PPh3)4]BF4, [RuIr(μ-C4)Cl(η2-O2)(CO)3(PPh3)4], [Ru2Hg(μ-C4)2Cl2(CO)4(PPh3)4], [Ru2Pt(μ-C4)2Cl2(CO)4(PPh3)6] and [Ru2(μ-C4)HCl(CO)4(PPh3)4].
Collapse
Affiliation(s)
- Michael J Bartlett
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Hill AF, Manzano RA. Dimetallapoly‐yn‐diylidynes: L
n
M≡C−(C≡C)
x
−C≡ML
n
(
x=
0–4). Angew Chem Int Ed Engl 2019; 58:15354-15357. [DOI: 10.1002/anie.201909550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Anthony F. Hill
- Research School of ChemistryThe Australian National University Canberra ACT 2601 Australia
| | - Richard A. Manzano
- Research School of ChemistryThe Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
12
|
Hill AF, Manzano RA. Dimetallapoly‐yn‐diylidynes: L
n
M≡C−(C≡C)
x
−C≡ML
n
(
x=
0–4). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anthony F. Hill
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Richard A. Manzano
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
13
|
Weisbach N, Kuhn H, Amini H, Ehnbom A, Hampel F, Reibenspies JH, Hall MB, Gladysz JA. Triisopropylsilyl (TIPS) Alkynes as Building Blocks for Syntheses of Platinum Triisopropylsilylpolyynyl and Diplatinum Polyynediyl Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nancy Weisbach
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Helene Kuhn
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Hashem Amini
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| | - Andreas Ehnbom
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| | - Frank Hampel
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Joseph H. Reibenspies
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| |
Collapse
|
14
|
Bruce MI, Head NJ, Skelton BW, Spackman MA, White AH. Tetraiodoallene, I2C=C=CI2 – the missing link between I2C=CI2 and I2C=C=C=CI2 – and the oxidation product, 2,2-diiodoacrylicacid, I2C=CH(CO2H). Aust J Chem 2018. [DOI: 10.1071/ch17348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The X-ray structure of tetraiodoallene is reported. On standing, atmospheric hydrolysis converts this compound into 2,2-diiodoacrylic acid, for which a structure has also been determined. Energy framework diagrams have been constructed for the two compounds.
Collapse
|
15
|
Synthesis and charge delocalization property of multimetallic molecular wires with diethynylthiophene bridges. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Tsai SH, Lin YC, Liu YH. Reactions of Ruthenium Complexes Containing Pentatetraenylidene Ligand. Chem Asian J 2016; 11:3072-3083. [PMID: 27617893 DOI: 10.1002/asia.201601045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 11/12/2022]
Abstract
Two ruthenium acetylide complexes [Ru]-C≡C-C≡C-C(OR)(C3 H5 )2 (2, R=H and 2 a, R=CH3 ; [Ru]=Cp(PPh3 )2 Ru) each with two cyclopropyl rings were synthesized from TMS-C≡C-C≡C-C(OH)(C3 H5 )2 (1; TMS=trimethylsilyl). Treatments of 2 and 2 a with allyl halide in the presence of KPF6 afforded the vinylidene complexes 3 and 3 a, respectively. When NH4 PF6 was used, instead of KPF6 , additional ring-opening reaction took place on one of the three-membered ring. Treatment of [Ru]Cl with 1,3-butadiyne (6), bearing an epoxide ring, afforded acetylide complex 7 with a furyl ring. Treatment of 2 a with Ph3 CPF6 presumably afforded pentatetraenylidene complex {[Ru]=C=C=C=C=C(C3 H5 )2 }[PF6 ] (10), which was not isolated. Additions of various alcohols in a solution of 10 generated a number of disubstituted allenylidene complexes {[Ru]=C=C=C(OR)-C=C(C3 H5 )2 }[PF6 ] (11). Treatment of 11 with K2 CO3 afforded the acetylide complex 12 bearing a carbonyl group, characterized by single X-ray diffraction analysis. Addition of a primary amine to 10 caused cleavage of the farthermost C=C bond and several allenylidene complexes {[Ru]=C=C=C(Me)(NHR)}[PF6 ] (18) were isolated.
Collapse
Affiliation(s)
- Shih-Hung Tsai
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ying-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
17
|
Forrest WP, Choudhuri MMR, Kilyanek SM, Natoli SN, Prentice BM, Fanwick PE, Crutchley RJ, Ren T. Synthesis and Electronic Structure of Ru2(Xap)4(Y-gem-DEE) Type Compounds: Effect of Cross-Conjugation. Inorg Chem 2015. [PMID: 26204103 DOI: 10.1021/acs.inorgchem.5b01315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reported in this Article are the preparation and characterization of a series of new Ru2(II,III) compounds bearing one cross-conjugated σ-geminal-diethynylethene ligand (gem-DEE), namely, Ru2(Xap)4(Y-gem-DEE) (Xap = N,N'-anilinopyridinate (ap) or 2-(3,5-dimethoxy)anilinopyridinate (DiMeOap), and Y = Si(i)Pr3 (1) or H (2)) and [Ru2(ap)4]2(μ-gem-DEE) (3). Compounds 1-3 were characterized by spectroscopic and voltammetric techniques as well as the single crystal X-ray diffraction study of 2a. The X-ray structural data of 2a and the spectroscopic/voltammetric data of compounds 1 and 2 indicate that the gem-DEE ligands are similar to simple alkynyls in their effects on the molecular and electronic structures of the Ru2(Xap)4 moiety. Similar to the previously studied [Ru2(ap)4]2(μ-C2n) type compounds, dimer 3 exhibits pairwise 1e(-) oxidations and reductions, albeit the potential splits within the pair (ΔE1/2) are significantly smaller than those of [Ru2(ap)4]2(μ-C4). The electronic absorption spectra of the reduced and oxidized derivatives of 1a and 3 were determined using spectroelectrochemistry methods. No discernible intervalence charge transfer transition (IVCT) was detected in the near-IR spectrum for either 3(-) or 3(+), suggesting that the Ru2-Ru2 coupling in these mixed-valence states is weak. DFT calculations on a model compound of 3 yielded six singly occupied molecular orbitals (SOMOs), which have Ru2 contributions similar to those previously calculated for the [Ru2(ap)4]2(μ-C2n) type compounds. Among six SOMOs, SOMO-2 is the only one containing substantial dπ-π(gem-DEE) character across the entire Ru2-μ-gem-DEE-Ru2 linkage, which explains the weakened Ru2-Ru2 coupling.
Collapse
Affiliation(s)
- William P Forrest
- †Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Stefan M Kilyanek
- §Department of Chemistry and Biochemistry, University of Arkansas, Fayettesville, Arkansas 72701, United States
| | - Sean N Natoli
- †Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Boone M Prentice
- †Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Phillip E Fanwick
- †Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J Crutchley
- ‡Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Tong Ren
- †Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Jiang H, Mazzanti V, Parker CR, Broman SL, Wallberg JH, Lušpai K, Brincko A, Kjaergaard HG, Kadziola A, Rapta P, Hammerich O, Nielsen MB. Interactions between tetrathiafulvalene units in dimeric structures - the influence of cyclic cores. Beilstein J Org Chem 2015; 11:930-48. [PMID: 26124895 PMCID: PMC4464444 DOI: 10.3762/bjoc.11.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/24/2015] [Indexed: 11/23/2022] Open
Abstract
A selection of cyclic and acyclic acetylenic scaffolds bearing two tetrathiafulvalene (TTF) units was prepared by different metal-catalyzed coupling reactions. The bridge separating the two TTF units was systematically changed from linearly conjugated ethyne, butadiyne and tetraethynylethene (trans-substituted) units to a cross-conjugated tetraethynylethene unit, placed in either acyclic or cyclic arrangements. The cyclic structures correspond to so-called radiaannulenes having both endo- and exocyclic double bonds. Interactions between two redox-active TTF units in these molecules were investigated by cyclic voltammetry, UV–vis–NIR and EPR absorption spectroscopical methods of the electrochemically generated oxidized species. The electron-accepting properties of the acetylenic cores were also investigated electrochemically.
Collapse
Affiliation(s)
- Huixin Jiang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Virginia Mazzanti
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark ; Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark
| | - Christian R Parker
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Søren Lindbæk Broman
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Jens Heide Wallberg
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Karol Lušpai
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 81237 Bratislava, Slovak Republic
| | - Adam Brincko
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 81237 Bratislava, Slovak Republic
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Anders Kadziola
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 81237 Bratislava, Slovak Republic
| | - Ole Hammerich
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
19
|
Oerthel MC, Yufit DS, Fox MA, Bryce MR, Low PJ. Syntheses and Structures of Buta-1,3-Diynyl Complexes from “on Complex” Cross-Coupling Reactions. Organometallics 2015. [DOI: 10.1021/om501186c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Dmitry S. Yufit
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Mark A. Fox
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Paul J. Low
- School
of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|