1
|
Straube A, Useini L, Hey-Hawkins E. Multi-Ferrocene-Based Ligands: From Design to Applications. Chem Rev 2025; 125:3007-3058. [PMID: 40096674 PMCID: PMC11951086 DOI: 10.1021/acs.chemrev.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Despite the extensive literature on ferrocene chemistry, a comprehensive analysis of multiferrocene ligands is notably absent. Thus, this review presents an overview of multiferrocenyl-containing ligands, focusing on their synthesis, characterization, and applications in catalysis and sensing. These ligands offer unique properties, including redox activity and planar chirality, making them valuable in asymmetric catalysis and molecular electronics. The review covers the literature from the first synthesis of tris(ferrocenyl)phosphane in 1962 to current developments, including various ligand subsets, which contain at least two ferrocene units within their structure. Special attention is given to explaining the coordination chemistry, electrochemical behavior, and practical applications of these ligands. The aim of this undertaking is to fill gaps in knowledge and inspire further research by identifying areas for exploration. Notably, certain ligand families like TRAP (trans-spanning phosphane) ligands remain underexplored in terms of their electrochemical properties, highlighting opportunities for future investigation. Thus, this review provides a resource for researchers in the field, stimulating further advancements in multiferrocenyl ligand chemistry and its wide-ranging applications.
Collapse
Affiliation(s)
- Axel Straube
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
- Wiley-VCH, Boschstr.
12, 69451 Weinheim, Germany
| | - Liridona Useini
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
- Evonik
Industries AG, Goldschmidtstr.
100, 45127 Essen, Germany
| | - Evamarie Hey-Hawkins
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
- Faculty
of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
- Department
of Chemistry, Babes-Bolyai University, 1, Kogalniceanu str., RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Korb M, Liu X, Walz S, Rosenkranz M, Dmitrieva E, Popov AA, Lang H. (Electrochemical) Properties and Computational Investigations of Ferrocenyl-substituted Fe 3(μ 3-PFc) 2(CO) 9 and Co 4(μ 4-PFc) 2(CO) 9 Clusters and Their Reduced Species. Inorg Chem 2020; 59:6147-6160. [PMID: 32323982 DOI: 10.1021/acs.inorgchem.0c00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of ferrocenyl-functionalized iron and cobalt carbonyl clusters is reported, based on a reaction of FcPCl2 (3) (Fc = Fe(η5-C5H5)(η5-C5H4)) with Fe2(CO)9 and Co2(CO)8, respectively. Therein, nido-Fe3(CO)9(μ3-PFc)2 (4) and nido-Co4(CO)10(μ3-PFc)2 (5) clusters were obtained as the first diferrocenyl-substituted carbonyl clusters with a symmetrical cluster core. Cluster 4 shows two reversible one-electron processes within the anodic region, based on Fc/Fc+ redox events, as well as two processes in the cathodic region. In situ IR and electron paramagnetic resonance (EPR) measurements of all electronic states confirmed an Fc-based oxidation and a core-based reduction. On the basis of the results of a single-crystal X-ray analysis of structures of 4 and 5, computational studies of the highest occupied molecular orbital-lowest unoccupied molecular orbital energies, the spin density, quantum theory of atom-in-molecule delocalization indices, and the atomic charges were performed to explain the experimental results. The latter revealed a reorganization of the cluster core upon reduction and the existence of weak P···P interactions in 4 and 5. Ferrocenyl-related redox processes, occurring reversibly in case of 4, were absent for 5, due to a different distribution of the HOMO energies. EPR measurements furthermore confirmed the core-based radical anion and the formation of a decomposition product at potentials lower than [M]2- (M = Fe, Co).
Collapse
Affiliation(s)
- Marcus Korb
- Faculty of Sciences, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, 6009 Crawley, Perth, Western Australia, Australia
| | - Xianming Liu
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Sebastian Walz
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Marco Rosenkranz
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Heinrich Lang
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.,Center for Materials, Architectures and Integration of Nanomembranes, Rosenbergstr. 6, D-09126 Chemnitz, Germany
| |
Collapse
|
3
|
Burmudžija A, Muškinja J, Ratković Z, Kosanić M, Ranković B, Novaković SB, Bogdanović GA. Pyrazoline derivatives of acryloyl substituted ferrocenyl ketones: Synthesis, antimicrobial activity and structural properties. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|