1
|
Richa, Kumar A, Verma I, Garg P, Erande RD, Javed S, Rajput A, Garcia CJG, Mota AJ, Arora H. Magnetic properties and pH-controlled reversible interconversion of μ-oxido into μ-hydroxido in oxo-carboxylato bridged iron(III) dimers: Theoretical and Experimental Insights. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Meskaldji S, Belkhiri L, Maurice R, Costuas K, Le Guennic B, Boucekkine A, Ephritikhine M. Electronic Structure and Magneto-Structural Correlations Study of Cu 2UL Trinuclear Schiff Base Complexes: A 3d-5f-3d Case. J Phys Chem A 2023; 127:1475-1490. [PMID: 36749943 DOI: 10.1021/acs.jpca.2c08755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The magnetic properties of trinuclear Schiff base complexes M2AnLi (MII = Zn, Cu; AnIV = Th, U; Li = Schiff base; i = 1-4, 6, 7, 9), exhibiting the [M(μ-O)2]2U core structure with adjacent M1···U and M2···U and next-adjacent M1···M2 interactions, featuring 3d-5f-3d subsystems, have been investigated theoretically using relativistic ZORA/B3LYP computations combined with the broken symmetry (BS) approach. Bond order and natural population analyses reveal that the covalent contribution to the bonding within the Cu-O-U coordination is important thus favoring superexchange coupling between the transition metal and the uranium magnetic centers. The calculated coupling constants JCuU between the Cu and U atoms, agree with the observed shift from the antiferromagnetic (AF) character of the L1,2,3,4 complexes to the ferromagnetic (ferro) of the L6,7,9 ones. The structural parameters, i.e., the Cu···U distances and the Cu-O-U angles, as well as the electronic factors driving the magnetic couplings are discussed. The analyses are supported by the study of the mixed ZnCuULi and Cu2ThLi systems, where in the first complex the CuII (3d9) ion is replaced by the diamagnetic ZnII (3d10) one, whereas in the second complex the UIV (5f2) paramagnetic center is replaced by the diamagnetic ThIV (5f0) one.
Collapse
Affiliation(s)
- Samir Meskaldji
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Ecole Normale Supérieure de l'Enseignement Technologique ENSET, 21000 Skikda, Algeria
| | - Lotfi Belkhiri
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Centre de Recherche en Sciences Pharmaceutiques CRSP, Ali Mendjeli, 25000 Constantine, Algeria
| | - Rémi Maurice
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Karine Costuas
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Boris Le Guennic
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Abdou Boucekkine
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michel Ephritikhine
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Electronic structure and magnetic properties of naphthalene- and stilbene-diimide-bridged diuranium(V) complexes: a theoretical study. J Mol Model 2020; 26:282. [DOI: 10.1007/s00894-020-04552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
|
4
|
Bikas R, Ajormal F, Emami M, Sanchiz J, Noshiranzadeh N, Kozakiewicz A. Crystal structure and magneto-structural investigation of alkoxido bridged dinuclear Fe(III) complexes with 1,3-oxazolidine ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Allouche F, Selmi W, Zid M, Benlecheb T. Theoretical and experimental study of new hybrid compound rich in hydrogen bonding: 2-carboxyanilinium hypophosphite. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Emami M, Bikas R, Noshiranzadeh N, Sanchiz J, Ślepokura K, Lis T. Synthesis, characterization and magnetic properties of phenoxido bridged dinuclear iron(III) complex with bis(phenolate) ligand. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Abstract
Over the past 25 years, magnetic actinide complexes have been the object of considerable attention, not only at the experimental level, but also at the theoretical one. Such systems are of great interest, owing to the well-known larger spin–orbit coupling for actinide ions, and could exhibit slow relaxation of the magnetization, arising from a large anisotropy barrier, and magnetic hysteresis of purely molecular origin below a given blocking temperature. Furthermore, more diffuse 5f orbitals than lanthanide 4f ones (more covalency) could lead to stronger magnetic super-exchange. On the other hand, the extraordinary experimental challenges of actinide complexes chemistry, because of their rarity and toxicity, afford computational chemistry a particularly valuable role. However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is required, but such an approach is computationally demanding for polymetallic systems—notably for actinide ones—and usually simplified models are considered instead of the actual systems. Thus, Density Functional Theory (DFT) appears as an alternative tool to compute magnetic exchange coupling and to explore the electronic structure and magnetic properties of actinide-containing molecules, especially when the considered systems are very large. In this paper, relevant achievements regarding DFT investigations of the magnetic properties of actinide complexes are surveyed, with particular emphasis on some representative examples that illustrate the subject, including actinides in Single Molecular Magnets (SMMs) and systems featuring metal-metal super-exchange coupling interactions. Examples are drawn from studies that are either entirely computational or are combined experimental/computational investigations in which the latter play a significant role.
Collapse
|
8
|
Selmi W, Abdelhak J, Marchivie M, Zid MF. A comparative structural, spectroscopic, optical and photoluminescence studies by DFT of Fe(II) difluoro(oxalato)borate complex. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|