Abubakar S, Bala MD. Transfer Hydrogenation of Ketones Catalyzed by Symmetric Imino-N-heterocyclic Carbene Co(III) Complexes.
ACS OMEGA 2020;
5:2670-2679. [PMID:
32095690 PMCID:
PMC7033672 DOI:
10.1021/acsomega.9b03181]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of new moisture-sensitive imine-functionalized N-heterocyclic carbene (NHC) precursor salts [1-(2-[(hydroxyl-benzylidene)-amino]-ethyl)-3-R-3H-imidazole-1-ium bromide; R = methyl (1a), ethyl (1b), and benzyl (1c)] is reported. Subsequent deprotonation of 1a-c and coordination of the in situ generated NHC ligands to CoBr2 led to the isolation of air-stable six-coordinate Co(III) complexes 2a-c, respectively. All the salts and complexes were fully characterized. Single-crystal X-ray analysis of 2a and 2c showed octahedral Co centers hexacoordinated to two NHC carbons, two imine nitrogen atoms, and two phenolate oxygens in the form [C^N^O(Co3+)C^N^O]. The complexes were used in the catalytic transfer hydrogenation (CTH) of a range of ketones in 2-propanol as the solvent and hydrogen donor. Based on a low catalyst concentration of 0.4 mol %, significant conversions in the range of 70-99% were recorded at high turnover frequencies up to 1635 h-1. A mechanism to account for the steps involved in the CTH of cyclohexanone by complex 2a is proposed and supported by data from cyclic voltammetry, low-resolution mass spectrometry, UV, and IR spectroscopic techniques.
Collapse