1
|
Thio Y, Vittal JJ. Catecholase-like activity in 2D MOFs: Oxidation of 3,5-DTBC by two Cu(II) 2D MOFs of reduced Schiff base ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Synthesis, crystal structure and ligand based catalytic activity of octahedral salen Schiff base Co(III) compounds. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Murali M, Sathya V, Selvakumaran B. Fate of model complexes with monocopper center towards the functional properties of type 2 and type 3 copper oxidases. J Biol Inorg Chem 2021; 26:67-79. [PMID: 33409586 DOI: 10.1007/s00775-020-01837-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Green colored mononuclear copper(II) complexes viz. [Cu(L)(bpy)](ClO4) (1) or [Cu(L)(phen)](ClO4) (2) (where H(L) is 2-((2-dimethylamino)ethyliminomethyl)naphthol) show distorted square pyramidal (4 + 1) geometry with CuN4O chromophore. The existence of self-assembled molecular associations indicates the formation of the dimer. Dimeric nature in solution is retained due to the binding of the substrate, encourages steric match between substrate and Cu(II) active site, which favors electron transfer. Interestingly, both the complexes exhibit high-positive redox potential. Therefore, the presence of self-assembled molecular association along with the positive redox potential enhances the catalytic oxidation of ascorbic acid to dehydroascorbic acid or benzylamine to benaldehyde or catechol to o-quinone thereby model the functional properties of type 2 and type 3 copper oxidases. Notably, catalytic activity is effective when compared with other reported mononuclear copper(II) complexes and even superior to many binuclear copper(II) complexes. Existence of self-assembled molecular association in solution along with high-positive redox potential favors electron transfer process in mononuclear copper(II) complexes and models the functional properties of type 2 and type 3 copper oxidases.
Collapse
Affiliation(s)
- Mariappan Murali
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620 001, India.
| | - Velusamy Sathya
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620 001, India
| | - Balasubramaniam Selvakumaran
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620 001, India
| |
Collapse
|
4
|
Silva MP, Saibert C, Bortolotto T, Bortoluzzi AJ, Schenk G, Peralta RA, Terenzi H, Neves A. Dinuclear copper(II) complexes with derivative triazine ligands as biomimetic models for catechol oxidases and nucleases. J Inorg Biochem 2020; 213:111249. [PMID: 33011624 DOI: 10.1016/j.jinorgbio.2020.111249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
The research reported herein focuses on the synthesis of two new Cu(II) complexes {[Cu2(2-X-4,6-bis(di-2-picolylamino)-1,3,5-triazine], with X = butane-1,4-diamine (2) or N-methylpyrenylbutane-1,4-diamine (3)}, the latter with a pyrene group as a possible DNA intercalating agent. The structure of complex (3) was determined by X-ray crystallography and shows the dinuclear {CuII(μ-OCH3)2CuII} unit in which the CuII···CuII distance of 3.040 Å is similar to that of 2.97 Å previously found for 1, which contains a {CuII(μ-OH)2CuII} structural unit. Complexes (2) and (3) were also characterized in spectroscopic and electrochemical studies, and catecholase-like activity were performed for both complexes. The kinetic parameters obtained for the oxidation of the model substrate 3,5-di-tert-butylcatechol revealed that the insertion of the spacer butane-1,4-diamine and the pyrene group strongly contributes to increasing the catalytic efficiency of these systems. In fact, Kass becomes significantly higher, indicating that these groups influence the interaction between the complex and the substrate. These complexes also show DNA cleavage under mild conditions with moderate reaction times. The rate of cleavage (kcat) indicated that the presence of butane-1,4-diamine and pyrene increased the activity of both complexes. The reaction mechanism seems to have oxidative and hydrolytic features and the effect of DNA groove binding compounds and circular dichroism indicate that all complexes interact with plasmid DNA through the minor groove. High-resolution DNA cleavage assays provide information on the interaction mechanism and for complex (2) a specificity for the unpaired hairpin region containing thymine bases was observed, in contrast to (3).
Collapse
Affiliation(s)
- Marcos P Silva
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Cristine Saibert
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Tiago Bortolotto
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Adailton J Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Gerhard Schenk
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Rosely A Peralta
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Vol’eva VB, Zhorin VA, Ovsyannikova MN, Kurkovskaya LN. Solid-Phase ortho-Hydroxylation of 2,4-Di-tert-butylphenol and Its Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042802001030x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Structurally characterized mononuclear isostructural Ni(II), Cu(II) and Zn(II) complexes as a functional model for phenoxazinone synthase activity. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Synthesis and structural characterization of a dinuclear copper(II) complex with a (N,S) donor ligand: Catecholase and phenoxazinone synthase activities. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Anitha N, Saravanan N, Ajaykamal T, Suresh E, Palaniandavar M. Catecholase activity of mononuclear copper(II) complexes of tridentate 3N ligands in aqueous and aqueous micellar media: Influence of stereoelectronic factors on catalytic activity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Das M, Craig GA, Escudero D, Murrie M, Frontera A, Ray D. A family of [Cu2], [Cu4] and [Cu5] aggregates: alteration of reaction conditions, ancillary bridges and capping anions. NEW J CHEM 2018. [DOI: 10.1039/c8nj02131g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enforced coordination by NO3−, ClO4− and CF3COO− groups resulted in the formation of [Cu2] (1), [Cu4] (2) and [Cu5] (3) complexes using H5L1.
Collapse
Affiliation(s)
- Manisha Das
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| | - Gavin A. Craig
- School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| | - Daniel Escudero
- CEISAM UMR CNRS 6230
- Université de Nantes
- 44322 Cedex 3 Nantes
- France
| | - Mark Murrie
- School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Debashis Ray
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| |
Collapse
|