1
|
Üstün E, Şahin N, Özdemir İ, Günal S, Gürbüz N, Özdemir İ, Sémeril D. Design, synthesis, antimicrobial activity and molecular docking study of cationic bis-benzimidazole-silver(I) complexes. Arch Pharm (Weinheim) 2023; 356:e2300302. [PMID: 37541657 DOI: 10.1002/ardp.202300302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Two series of bis(1-alkylbenzimidazole)silver(I) nitrate and bis(1-alkyl-5,6-dimethylbenzimidazole)silver(I) nitrate complexes, in which the alkyl substituent is either an allyl, a 2-methylallyl, an isopropyl or a 3-methyloxetan-3-yl-methyl chain, were synthesized and fully characterized. The eight N-coordinated silver(I) complexes were screened for both antimicrobial activities against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii) and Gram-positive (Staphylococcus aureus, Staphylococcus aureus MRSA, and Enterococcus faecalis) bacteria and antifungal activities against Candida albicans and Candida glabrata strains. Moderate minimal inhibitory concentrations (MIC) of 0.087 μmol/mL were found when the Gram-negative and Gram-positive bacteria were treated with the silver complexes. Nevertheless, MIC values of 0.011 μmol/mL, twice lower than for the well-known fluconazole, against the two fungi were measured. In addition, molecular docking was carried out with the structure of Escherichia coli DNA gyrase and CYP51 from the pathogen Candida glabrata with the eight organometallic complexes, and molecular reactivity descriptors were calculated with the density functional theory-based calculation methods.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, Ordu, Türkiye
| | - Neslihan Şahin
- Department of Mathematics and Science Education, Cumhuriyet University, Sivas, Türkiye
| | - İlknur Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
- Drug Application and Research Center, İnönü University, Malatya, Türkiye
| | - Selami Günal
- Department of Microbiology, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
- Drug Application and Research Center, İnönü University, Malatya, Türkiye
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
- Drug Application and Research Center, İnönü University, Malatya, Türkiye
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Kumari M, Dasgupta S, Panda S, Bera SK, Datta A, Lahiri GK. Unique Metal-Ligand Interplay in Directing Discrete and Polymeric Derivatives of Isomeric Azole-Carboxylate. Varying Electronic Form, C-C Coupling, and Receptor Feature. Inorg Chem 2023; 62:7779-7794. [PMID: 37163348 DOI: 10.1021/acs.inorgchem.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This article dealt with the ruthenium and osmium derivatives of isomeric 1H-indazole-3-carboxylic acid/2H-indazole-3-carboxylic acid (H2L1) and 1H-benzimidazole-2-carboxylic acid (H2L2) along with the π-acidic bpy (bpy = 2,2'-bipyridine) and pap (pap = 2-phenylazopyridine) co-ligands. It thus extended structurally authenticated monomeric ([(bpy)2RuII(HL1-)]ClO4 [1]ClO4, (pap)2RuII(L12-) 2, (bpy)2OsII(L12-) 3, (pap)2OsII(L12-) 4, (bpy)2RuII(L22-) 5, (bpy)2OsII(L22-) 8, and (pap)2OsII(L22-) 9) and dimeric ([(bpy)2RuII(μ-L22-)RuII(bpy)2](ClO4)2 [6](ClO4)2) complexes. It also described modified L2'2- (L2'2- = 2,2'-bisbenzimidazolate)-bridged [(pap)2RuII(μ-L2'2-)RuII(pap)2](ClO4)2 [7](ClO4)2, where L2'2- was developed selectively with the {Ru(pap)2} metal fragment via in situ intermolecular C-C coupling of the two units of decarboxylated benzimidazolate. Moreover, chemical oxidation (OsII to OsIII) of (bpy)2OsII(L12-) 3 (E0 = 0.11 V versus SCE) and (bpy)2OsII(L22-) 8 (E0 = 0.12 V versus SCE) by AgClO4 yielded unprecedented OsIII-AgI derived polymeric {[(bpy)2OsIII-L12--AgI(CH3CN)](ClO4)2}n {[10](ClO4)2}n and dimeric [(bpy)2OsIII-L22--AgI(CH3CN)](ClO4)2 [11](ClO4)2 complexes as a function of trans and cis orientations of the active N2 donor with special reference to the carboxylate O2 of L2-, respectively. Microscopic (FE-SEM, TEM-EDX, and AFM) and DLS experiments suggested a homogeneously dispersed hollow spherical shaped morphology of {[10](ClO4)2}n with an average particle size of 200-400 nm as well as its non-dissociative feature in the aprotic medium. Experimental (structure, spectroscopy, and electrochemistry) and theoretical (DFT/TD-DFT) explorations revealed a redox non-innocent feature of L2- in the present coordination situations and the selective anion sensing (X = F-, CN-, and OAc-) event of [1]ClO4 involving a free NH group at the backface of HL1-, which proceeded via the NH···X hydrogen bonding interaction.
Collapse
Affiliation(s)
- Maya Kumari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Battula H, SD A, Nahata SA, Patnaik LD, Ranga S, Jayanty S. Photophysical property and thermal stability of a simple protonated hydrogen bonding complex: 3-Amino-5-nitro-[2,1]benzoisothiazole-p-toluenesulfonate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Rendošová M, Gyepes R, Maruščáková IC, Mudroňová D, Sabolová D, Kello M, Vilková M, Almáši M, Huntošová V, Zemek O, Vargová Z. An in vitro selective inhibitory effect of silver(i) aminoacidates against bacteria and intestinal cell lines and elucidation of the mechanism of action by means of DNA binding properties, DNA cleavage and cell cycle arrest. Dalton Trans 2021; 50:936-953. [PMID: 33350415 DOI: 10.1039/d0dt03332d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel silver(i) aminoacidate complexes {[Ag(HVal)(H2O)(NO3)]}n (AgVal) and {[Ag3(HAsp)2(NO3)]}n·nH2O (AgAsp) were prepared, investigated and fully characterized by vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis, X-ray crystallography and mass spectrometry. Their stability in D2O and PBS buffer was verified by time-dependent 1H and 13C NMR measurements. Their in vitro antibacterial activity (against pathogenic Staphylococcus aureus CCM4223, Escherichia coli CCM4787) and that against probiotic bacteria Lactobacillus plantarum CCM7102 and Lactobacillus reuteri (L26) were determined and potential dosing concentration was evaluated. The cytotoxicity of both the complexes against intestinal porcine epithelial (IPEC-1) and human epithelial colorectal adenocarcinoma (CaCo-2) cell lines was determined using the colorimetric MTT assay and against human metastatic melanoma (A2058), human pancreatic adenocarcinoma (PaTu 8902), human cervical adenocarcinoma (HeLa), human colorectal carcinoma (HCT116), human leukaemic T cell lymphoma (Jurkat), and human dermal fibroblasts (HDF) using colorimetric MTS assay. The selectivity index (SI) was identified for intestinal cancer (CaCo-2) and healthy (IPEC-1) cells. The mechanism of action of AgVal and AgAsp was further elucidated and discussed by the study of their binding affinity toward the CT DNA, the ability to cleave the supercoiled form of pUC19 DNA and the ability to influence numbers of cells within each cell cycle.
Collapse
Affiliation(s)
- Michaela Rendošová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kaloğlu M. Half-sandwich ruthenium-carbene catalysts: Synthesis, characterization, and catalytic application in the N-alkylation of amines with alcohols. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Synthesis and evaluation of anticancer properties of novel benzimidazole ligand and their cobalt(II) and zinc(II) complexes against cancer cell lines A-2780 and DU-145. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118977] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
KARATAŞ MO, Ergün A. Synthesis, Characterization, and Carbonic Anhydrase Inhibitory Properties of Silver(I) Complexes of Benzimidazole Derivatives. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.546960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Karlık Ö, Gençer N, Karataş MO, Ergün A, Çıkrıkcı K, Arslan O, Alıcı B, Kılıç-Cıkla I, Özdemir N. Microwave-assisted synthesis of 1-substituted-1H-benzimidazolium salts: Non-competitive inhibition of human carbonic anhydrase I and II. Arch Pharm (Weinheim) 2019; 352:e1800325. [PMID: 30614558 DOI: 10.1002/ardp.201800325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 01/09/2023]
Abstract
A series of 1-substituted-1H-benzimidazolium p-toluenesulfonate salts were synthesized in good yields by the reaction of 1-substituted benzimidazole derivatives and p-toluenesulfonic acid under microwave irradiation. Two iodide salts were synthesized by the anion exchange reaction of the corresponding p-toluenesulfonate salt and NaI. All compounds were characterized by 1 H NMR, 13 C NMR, IR, LC-MS spectroscopic methods, and elemental analyses. The crystal structure of 1-methoxyethyl-1H-benzimidazolium p-toluenesulfonate 2d showed that cation and anion are interconnected by N-H···O and C-H···O hydrogen bonds. All compounds were examined as inhibitor of human carbonic anhydrase (hCA) I and II, and all of them inhibited hCA I and hCA II. Kinetic investigation results revealed that these compounds inhibit hCA I and hCA II in a non-competitive manner. The iodide salts had higher inhibitory activity than their corresponding p-toluenesulfonate salts.
Collapse
Affiliation(s)
- Özgül Karlık
- Faculty of Arts and Science, Department of Chemistry, İnönü University, Malatya, Turkey
| | - Nahit Gençer
- Faculty of Arts and Science, Department of Chemistry, Balıkesir University, Balıkesir, Turkey
| | - Mert O Karataş
- Faculty of Arts and Science, Department of Chemistry, İnönü University, Malatya, Turkey
| | - Adem Ergün
- Faculty of Arts and Science, Department of Chemistry, Balıkesir University, Balıkesir, Turkey
| | - Kübra Çıkrıkcı
- Faculty of Arts and Science, Department of Chemistry, Balıkesir University, Balıkesir, Turkey
| | - Oktay Arslan
- Faculty of Arts and Science, Department of Chemistry, Balıkesir University, Balıkesir, Turkey
| | - Bülent Alıcı
- Faculty of Arts and Science, Department of Chemistry, İnönü University, Malatya, Turkey
| | - Işın Kılıç-Cıkla
- Department of General Secretary, Ondokuz Mayıs University, Samsun, Turkey
| | - Namık Özdemir
- Faculty of Education, Department of Mathematics and Science Education, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
10
|
Evaluation of the Absorption Behavior of Main Component Compounds of Salt-Fried Herb Ingredients in Qing'e Pills by Using Caco-2 Cell Model. Molecules 2018; 23:molecules23123321. [PMID: 30558187 PMCID: PMC6321031 DOI: 10.3390/molecules23123321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Qing’e Pills is a Chinese traditional herbal product, which is often used to strengthen muscles and bones in TCM (traditional Chinese Medicine) practice. Its two main component herbs, namely, Cortex Eucommiae and Fructus Psoraleae are both required to be salt-fried according to TCM theory. We have evaluated the effects of salt-frying treated herbs on Caco-2 cell uptake behavior for those active ingredients of Qing’e Pills. By investigating of various variables, including MTT, temperature, inhibitors, pH, salt concentration and herb processing methods, we tried to clarify whether the salt-processing on herbs was necessary or not. Results showed that, compared to other processing methods, the salt-frying process significantly (p < 0.01) enhanced the absorption of effective components of Qing’e Pills. The way that psoralen, isopsoralen, psoralenoside and geniposide acid entered Caco-2 cells at low concentrations was via passive diffusion. These components were not substrates of P-glycoprotein. It demonstrated that the salt-frying process not only enhanced the concentration of active components in herb extract, but also changed their absorption behaviors. Nevertheless, the mechanism of absorption behavior changing needs to be further investigated.
Collapse
|
11
|
Qi H, Li X, Liu Z, Miao SS, Fang Z, Chen L, Fang Z, Guo K. Regioselective Chlorination of Quinoline Derivatives via Fluorine Mediation in a Microfluidic Reactor. ChemistrySelect 2018. [DOI: 10.1002/slct.201802925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Qi
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
| | - Xin Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
| | - Zhuang Liu
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
| | - Shan-Shan Miao
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 211816 China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 211816 China
| |
Collapse
|