1
|
Krasnovskaya O, Abramchuk D, Vaneev A, Gorelkin P, Abakumov M, Timoshenko R, Kuzmichev I, Chmelyuk N, Vadehina V, Kuanaeva R, Dubrovin E, Kolmogorov V, Beloglazkina E, Kechko O, Mitkevich V, Varshavskaya K, Salikhov S, Erofeev A. Bifunctional Copper Chelators Capable of Reducing Aβ Aggregation and Aβ-Induced Oxidative Stress. ACS OMEGA 2024; 9:43376-43384. [PMID: 39493999 PMCID: PMC11525521 DOI: 10.1021/acsomega.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Five bifunctional copper chelating agents, Alz-(1-5), designed to prevent beta-amyloid (Aβ) aggregation, were synthesized, and the leader compound (Alz-5) was chosen. Alz-5 acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity. Reactive oxygen species measurements provided by the Pt-nanoelectrode technique in single Aβ42-affected human neuroblastoma SH-SY5Y cells revealed significant antioxidant activity of Alz-5. AFM data obtained on Aβ42 fibrils clearly indicate the antiaggregating property of Alz-5. To gain insights into the changes in the physiomechanical properties of Aβ42-affected cells, as well as in order to evaluate the antiaggregating ability of Alz-5, Young's modulus mapping on living SH-SY5Y cells affected consequently by Aβ42 and Alz-5 was conducted, and the ability of Alz-5 to decrease cell rigidity induced by Aβ42 was indisputably proven. Low cell toxicity and antioxidating properties, in conjunction with AFM and SICM-based biophysical provided on Aβ42-affected SH-SY5Y cells, support Alz-5 as a potential inhibitor of Aβ aggregation.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Daniil Abramchuk
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alexander Vaneev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr Gorelkin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim Abakumov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
| | - Roman Timoshenko
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Ilia Kuzmichev
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Nelly Chmelyuk
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Veronika Vadehina
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Regina Kuanaeva
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Evgeniy Dubrovin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 2, Moscow 119991, Russia
| | - Vasilii Kolmogorov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Olga Kechko
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Vladimir Mitkevich
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Kseniya Varshavskaya
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Sergey Salikhov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander Erofeev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
2
|
Beloglazkina EK, Moiseeva AA, Tsymbal SA, Guk DA, Kuzmin MA, Krasnovskaya OO, Borisov RS, Barskaya ES, Tafeenko VA, Alpatova VM, Zaitsev AV, Finko AV, Ol'shevskaya VA, Shtil AA. The Copper Reduction Potential Determines the Reductive Cytotoxicity: Relevance to the Design of Metal-Organic Antitumor Drugs. Molecules 2024; 29:1032. [PMID: 38474543 DOI: 10.3390/molecules29051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.
Collapse
Affiliation(s)
- Elena K Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Anna A Moiseeva
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Sergey A Tsymbal
- International Institute of Solution Chemistry and Advanced Materials and Technologies, ITMO University, 9 Lomonosov Street, Saint-Petersburg 197101, Russia
| | - Dmitry A Guk
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Mikhail A Kuzmin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Olga O Krasnovskaya
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Roman S Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Avenue, Moscow 119991, Russia
| | - Elena S Barskaya
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Victor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Victoria M Alpatova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Bld. 1, 28 Vavilov Street, Moscow 119334, Russia
| | - Andrei V Zaitsev
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Bld. 1, 28 Vavilov Street, Moscow 119334, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Valentina A Ol'shevskaya
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Bld. 1, 28 Vavilov Street, Moscow 119334, Russia
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| |
Collapse
|
3
|
Iakimova TM, Bubley AA, Boychenko OP, Guk DA, Vaneev AN, Prusov AN, Erofeev AS, Gorelkin PV, Krasnovskaya OO, Klyachko NL, Vlasova KY. Liposomal form of 2-alkylthioimidazolone-based copper complexes for combined cancer therapy. Nanomedicine (Lond) 2023; 18:2105-2123. [PMID: 38127591 DOI: 10.2217/nnm-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: To develop an optimized approach for encapsulating a 2-alkylthioimidazolone-based copper coordination compound within liposomes, which could offer treatment of cancer and bacterial infections by reactive oxygen species generation toxicity mechanisms. Materials & methods: For drug-loaded liposome preparation, lipids and drug mixture in organic solvents was injected into copper salt solution, forming a coordination compound simultaneously embedded in the lipid bilayer. In vitro tests were performed on MCF7 and MDA-MB-231 breast cancer cells. Results: Liposomes had a loading capacity of up to 1.75% (molar drug-to-lipid ratio). In vitro tests showed increased viability and accumulation of the liposomal formulation compared with free drug as well as lack of cytotoxicity in hepatocytes. Conclusion: This optimized technique for encapsulating large copper complexes in liposomes could be used to improve their delivery and better treat cancer and bacterial infections.
Collapse
Affiliation(s)
- Tamara M Iakimova
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna A Bubley
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga P Boychenko
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Guk
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander N Vaneev
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Research Laboratory of Biophysics, National University of Science & Technology, Moscow, 119049, Russia
| | | | - Alexander S Erofeev
- Research Laboratory of Biophysics, National University of Science & Technology, Moscow, 119049, Russia
- Research Laboratory of Scanning Probe Microscopy, Moscow Polytechnical University, Moscow, 107023, Russia
| | - Petr V Gorelkin
- Research Laboratory of Biophysics, National University of Science & Technology, Moscow, 119049, Russia
| | - Olga O Krasnovskaya
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia L Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Kseniia Yu Vlasova
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Finko AV, Guk DA, Saakian AS, Moiseeva AA, Tafeenko VA, Shiryaeva ES, Pergushov VI, Ya Melnikov M, Komlev AS, Beloglazkin AA, Borisov RS, Zyk NV, Majouga AG, Beloglazkina EK. Structurally similar mixed-valent coordination compounds formed during the interaction of bis-5-pyridylmethylene-2-thioimidazolone with CuBr2 и CuCl2. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Chorbu AA, Barskaya ES, Moiseeva AA, Guk DA, Krasnovskaya OO, Lyssenko KA, Rzheutski AV, Abramovich MS, Polyakova MN, Berezina AV, Zyk NV, Beloglazkinax EK. Ditopic pyridyl-benzothiazole – pyridylmethylene-2-thiohydantoin conjugates: synthesis and study in complexation with CuCl2. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Finko AV, Sokolov AI, Guk DA, Tafeenko VA, Moiseeva AA, Skvortsov DA, Stomakhin AA, Beloglazkin AA, Borisov RS, Pergushov VI, Melnikov MY, Zyk NV, Majouga AG, Beloglazkina EK. Copper coordination compounds with (5 Z,5 Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4 H-imidazol-4-ones. Comparison with sulfur analogue. RSC Adv 2022; 12:7133-7148. [PMID: 35424664 PMCID: PMC8982280 DOI: 10.1039/d1ra08995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
A series of new organic ligands (5Z,5Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-ones (L) consisting of two 5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-one units linked with polymethylene chains of various lengths (n = 2-10, where n is the number of CH2 units) have been synthesized. The reactions of these ligands with CuCl2·2H2O and CuClO4·6H2O gave Cu2+ or Cu1+ containing mono- and binuclear complexes with Cu2LCl x (x = 2-4) or CuL(ClO4) y (y = 1, 2) composition. It was shown that the agents reducing Cu2+ to Cu1+ in the course of complex formation can be both a ligand and an organic solvent in which the reaction is carried out. This fundamentally distinguishes the selenium-containing ligands L from their previously described sulfur analogs, which by themselves are not capable of reducing Cu2+ during complexation under the same conditions. A higher cytotoxicity and reasonable selectivity to cancer cell lines for synthesized complexes of selenium-containing ligands was shown; unlike sulfur analogs, ligands L themselves demonstrate a high cytotoxicity, comparable in some cases to the toxicity of copper-containing complexes.
Collapse
Affiliation(s)
- Alexander V Finko
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Anatolii I Sokolov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Dmitry A Guk
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Victor A Tafeenko
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Anna A Moiseeva
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Dmitry A Skvortsov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Higher School of Economics Myasnitskaya 13 Moscow 101000 Russia
| | - Andrei A Stomakhin
- Engelhardt Institute of Molecular Biology RAS Vavilova 32 Moscow 119991 Russia
| | - Andrei A Beloglazkin
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Roman S Borisov
- Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Vladimir I Pergushov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Mikhail Ya Melnikov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Nikolay V Zyk
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Alexander G Majouga
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,National University of Science and Technology Leninskii pr., 4 Moscow 119049 Russia.,Mendeleev University of Chemical Technology Miusskaya pl. 9 Moscow 125047 Russia
| | - Elena K Beloglazkina
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| |
Collapse
|
7
|
Marinova P, Marinov M, Kazakova M, Feodorova Y, Blazheva D, Slavchev A, Georgiev D, Nikolova I, Sbirkova-Dimitrova H, Sarafian V, Stoyanov N. Copper(II) Complex of Bis(1',3'-Hydroxymethyl)-Spiro-(Fluorene-9,4'-Imidazolidine)-2',5'-Dione, Cytotoxicity and Antibacterial Activity of Its Derivative and Crystal Structure of Free Ligand. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621130052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Synthesis of 4,4′-substituted 2,2′-[ethane-1,2-diylbis(selanediyl)]bis(1H-imidazol-5(4H)-ones). Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3108-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Guk D, Naumov A, Krasnovskaya O, Tafeenko V, Moiseeeva A, Pergushov V, Melnikov M, Zyk N, Majouga A, Belolglazkina E. Three types of copper derivatives formed by CuCl 2·2H 2O interaction with ( Z)-3-aryl-2-(methylthio)-5-(pyridine-2-ylmethylene)-3,5-dihydro-4 H-imidazol-4-ones. Dalton Trans 2020; 49:14528-14535. [PMID: 33048098 DOI: 10.1039/d0dt02817g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactions of (Z)-3-aryl-2-(methylthio)-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazol-4-ones (3) with CuCl2·2H2O in the presence of a reducing solvent (alcohol or dimethylformamide (DMF)) produce three types of Cu-containing compounds: two Cu complexes with a composition of CuII(3)Cl2 (4) and CuI(3)Cl (5) as well as a salt (3 + H)+CuICl2- (6) in a 4 : 5 : 6 ratio depending on the substituent at the N(3) nitrogen atom of the ligand moiety. In non-reducing solvents (dimethyl sulfoxide (DMSO) and CHCl3/acetone), only complexes 4 were formed, All three Cu derivatives (4, 5, and 6) were characterized by single-crystal X-ray diffraction, UV/vis spectroscopy, and electrochemistry data. Convenient electrochemical and UV-vis spectral criteria were recorded, which made it possible to distinguish between the different Cu-containing compounds. Based on the electron spectroscopy and electron paramagnetic resonance (EPR) data, a possible scheme for the formation of compounds 4-6 was proposed, including the initial coordination of copper(ii) chloride with an organic ligand, the subsequent reduction of the resulting complex 4 by DMF with the formation of salt 6, and the further transition of salt 6 into the complex 5.
Collapse
Affiliation(s)
- Dmitry Guk
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Alexei Naumov
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Olga Krasnovskaya
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia. and National University of Science and Technology "MISiS", Leninskiy pr. 4, Moscow 119991, Russia
| | - Viktor Tafeenko
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Anna Moiseeeva
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Vladimir Pergushov
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Michail Melnikov
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Nikolai Zyk
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Alexander Majouga
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia. and National University of Science and Technology "MISiS", Leninskiy pr. 4, Moscow 119991, Russia and Chemistry Department, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Elena Belolglazkina
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia.
| |
Collapse
|
10
|
Krasnovskaya OO, Guk DA, Naumov AE, Nikitina VN, Semkina AS, Vlasova KY, Pokrovsky V, Ryabaya OO, Karshieva SS, Skvortsov DA, Zhirkina IV, Shafikov RR, Gorelkin PV, Vaneev AN, Erofeev AS, Mazur DM, Tafeenko VA, Pergushov VI, Melnikov MY, Soldatov MA, Shapovalov VV, Soldatov AV, Akasov RA, Gerasimov VM, Sakharov DA, Moiseeva AA, Zyk NV, Beloglazkina EK, Majouga AG. Novel Copper-Containing Cytotoxic Agents Based on 2-Thioxoimidazolones. J Med Chem 2020; 63:13031-13063. [PMID: 32985193 DOI: 10.1021/acs.jmedchem.0c01196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 μm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.
Collapse
Affiliation(s)
- Olga O Krasnovskaya
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Dmitry A Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alexey E Naumov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119991, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Vadim Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe Highway 23, Moscow 115478, Russia.,People's Friendship University, Moscow, Russia, Miklukho-Maklaya 6, Moscow 117198, Russia
| | - Oksana O Ryabaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe Highway 23, Moscow 115478, Russia
| | - Saida S Karshieva
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe Highway 23, Moscow 115478, Russia
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia.,Department of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow 101000, Russia
| | - Irina V Zhirkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Radik R Shafikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Petr V Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia
| | - Alexander N Vaneev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alexander S Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Viktor A Tafeenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Vladimir I Pergushov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Mikhail Ya Melnikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Mikhail A Soldatov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Victor V Shapovalov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Alexander V Soldatov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Roman A Akasov
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
| | - Vasily M Gerasimov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna A Moiseeva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alexander G Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| |
Collapse
|
11
|
Barskaya ES, Madatli NM, Abramovich MS, Zyk NV, Majouga AG, Berezina AV, Beloglazkina EK. New ditopic organic ligands with 2-pyridylbenzothiazole and 5-pyridylmethylidene-2-(methylthio)imidazolone fragments. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2714-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Rada JP, Bastos BSM, Anselmino L, Franco CHJ, Lanznaster M, Diniz R, Fernández CO, Menacho-Márquez M, Percebom AM, Rey NA. Binucleating Hydrazonic Ligands and Their μ-Hydroxodicopper(II) Complexes as Promising Structural Motifs for Enhanced Antitumor Activity. Inorg Chem 2019; 58:8800-8819. [DOI: 10.1021/acs.inorgchem.9b01195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jesica Paola Rada
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Beatriz S. M. Bastos
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Luciano Anselmino
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | - Renata Diniz
- Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Mauricio Menacho-Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Ana Maria Percebom
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Nicolás A. Rey
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| |
Collapse
|
13
|
Guk DA, Krasnovskaya OO, Dashkova NS, Skvortsov DA, Rubtsova MP, Dyadchenko VP, Yudina ES, Kosarev MA, Soldatov AV, Shapovalov VV, Semkina AS, Vlasova KY, Pergushov VI, Shafikov RR, Andreeva AA, Melnikov MY, Zyk NV, Majouga AG, Beloglazkina EK. New ferrocene-based 2-thio-imidazol-4-ones and their copper complexes. Synthesis and cytotoxicity. Dalton Trans 2018; 47:17357-17366. [DOI: 10.1039/c8dt03164a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Characterization and cytotoxicity of ferrocene-based imidazolones and their copper complexes.
Collapse
|