1
|
Afshariazar F, Morsali A. Mixed-valence metal-organic frameworks: concepts, opportunities, and prospects. Chem Soc Rev 2025; 54:1318-1383. [PMID: 39704326 DOI: 10.1039/d4cs01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Owing to increasing global demand for the development of multifunctional advanced materials with various practical applications, great attention has been paid to metal-organic frameworks due to their unique properties, such as structural, chemical, and functional diversity. Several strategies have been developed to promote the applicability of these materials in practical fields. The induction of mixed-valency is a promising strategy, contributing to exceptional features in these porous materials such as enhanced charge delocalization, conductivity, magnetism, etc. The current review provides a detailed study of mixed-valence MOFs, including their fundamental properties, synthesis challenges, and characterization methods. The outstanding applicability of these materials in diverse fields such as energy storage, catalysis, sensing, gas sorption, separation, etc. is also discussed, providing a roadmap for future design strategies to exploit mixed valency in advanced materials. Interestingly, mixed-valence MOFs have demonstrated fascinating features in practical fields compared to their homo-valence MOFs, resulting from an enhanced synergy between mixed-valence states within the framework.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Zhang JW, Wang LX, Cheng X, Hou LL, Li JZ, Wang CF, Yan XW, Liu KG. Use Chloride to Assist in Constructing of Penta- and Nano-Nucleus Mixed-valent Cu(I/II) Clusters and their Photo-thermal Properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Dzumbira W, Ali N, Duanmu C, Yang Y, Khan A, Ali F, Bilal M, Aleya L, Iqbal HMN. Separation and remediation of environmental pollutants using metal-organic framework-based tailored materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4822-4842. [PMID: 34787811 DOI: 10.1007/s11356-021-17446-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023]
Abstract
Metal-organic frameworks (MOFs) are a polymer hybrid family of compounds comprising metal ions that have been deliberately incorporated in organic ligands to form several multi-dimensional structures with unique structural and functional attributes. They have the typical properties of brittleness, major porosity, and randomly crystalline. These three factors hampered their potential incorporation into modern technologies. However, with the discovery of their polymers, hope was rekindled. Polymers, unlike their counterparts, are versatile and malleable and can be tailored into solids with a wide range of technical applications. MOFs can be effectively incorporated into polymer structures, resulting in polymers with enhanced properties and increased demand, according to recent studies. This review focuses on the synthetic procedures of MOFs used to create hybrid materials, as well as their potential environmentally related applications. Desalination, hazardous heavy metal removal and mitigation, gas and liquid separations and purifications, and dye removal will all be extensively discussed as applications. To assemble this review, we will add insight from recent papers and discoveries, as well as seminal reports from experts on the advancement of MOF-polymers.
Collapse
Affiliation(s)
- Walter Dzumbira
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China.
| | - Chuansong Duanmu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
4
|
Rojas S, Horcajada P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem Rev 2020; 120:8378-8415. [DOI: 10.1021/acs.chemrev.9b00797] [Citation(s) in RCA: 415] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
5
|
Co(II/III) Complexes with Benzoxazole and Benzothiazole Ligands as Efficient Heterogenous Photocatalysts for Organic Dyes Degradation. Catalysts 2019. [DOI: 10.3390/catal9110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The problem of pollution in the current world is growing, however people’s awareness of environmental protection and ecology is also increasing. The aim of the study is to present three new Schiff base compounds with Co(II/III) ions and to assess their photocatalytic activity. The study was supported by cyclic voltammetry technique. In due course the complex 2 revealed as the most effective in AR18 degradation, even more than commercially available TiO2. The search for new photocatalysts able to decompose harmful organic dyes into environmentally friendly basic substances is becoming a new trend in the area of chemistry development.
Collapse
|
6
|
Bazhina ES, Bovkunova AA, Medved’ko AV, Efimov NN, Kiskin MA, Eremenko IL. Unusual Polynuclear Copper(II) Complexes with a Schiff-Base Ligand Containing Pyridyl and 1,2,4-Triazolyl Rings. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01575-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
First transition metal complex containing SMIA− carboxylate ligand: Synthesis, structure and magnetic properties of a new tetranuclear copper complex [Cu4(SMIA)6(phen)4](ClO4)2. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|