1
|
Maurya MR, Chauhan A, Verma A, Kumar U, Avecilla F. Amine-functionalized titanium dioxide supported dioxidomolybdenum(VI) complexes as functional model for phenoxazinone synthase enzyme. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Vlasenko VG, Burlov AS, Koshchienko YV, Kolodina AA, Kubrin SP, Chaltsev BV, Zubavichus YV, Lazarenko VA, Zubenko AA, Klimenko AI. Synthesis, structural characterization, and biological activities of mononuclear Fe(II), Mn(II), and Ni(II) complexes derived from N-[2-(2-diethylaminoethyliminomethyl)phenyl]-4-methylbenzenesulfonamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Burlov AS, Vlasenko VG, Koshchienko YV, Milutka MS, Garnovskii DA, Kolodina AA, Zubavichus YV, Kiskin MA. Synthesis, structure, and photoluminescence of Zn(II) and Cd(II) complexes with N-[2-(diethylaminoalkyliminomethyl)-phenyl]-4-methylbenzenesulfonamides. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Feng X, Li J, Feng Y, Zhang K, Chen N, Fang H, Li Z. Series of d10 complexes based on sulfamethoxazole: Auxiliary ligand induces structure diversity, luminescence and antibacterial properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Synthesis, structural, spectral studies, and DFT calculations of a series of mixed ligand complexes of a tridentate N, N, S pyrazole based aldimine and 2,2′-bipyridine. The first example of structurally characterized dimeric cadmium(II) adduct with unusual μ2-Osulfonamido bridges. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Diana R, Panunzi B. The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules 2020; 25:molecules25214984. [PMID: 33126503 PMCID: PMC7662684 DOI: 10.3390/molecules25214984] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Tridentate ligands are simple low-cost pincers, easy to synthetize, and able to guarantee stability to the derived complexes. On the other hand, due to its unique mix of structural and optical properties, zinc(II) ion is an excellent candidate to modulate the emission pattern as desired. The present work is an overview of selected articles about zinc(II) complexes showing a tuned fluorescence response with respect to their tridentate ligands. A classification of the tridentate pincers was carried out according to the binding donor atom groups, specifically nitrogen, oxygen, and sulfur donor atoms, and depending on the structure obtained upon coordination. Fluorescence properties of the ligands and the related complexes were compared and discussed both in solution and in the solid state, keeping an eye on possible applications.
Collapse
|
7
|
Jana NC, Brandão P, Frontera A, Panja A. A facile biomimetic catalytic activity through hydrogen atom abstraction by the secondary coordination sphere in manganese(III) complexes. Dalton Trans 2020; 49:14216-14230. [PMID: 33025999 DOI: 10.1039/d0dt02431g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This paper describes the synthesis and structural characterization of four new manganese(iii) complexes (1-4) derived from N3O donor Schiff base ligands and their biomimetic catalytic activities related to catechol oxidase and phenoxazinone synthase. X-ray crystallography reveals that the Schiff bases coordinate the metal centre in a tridentate fashion, leaving the pendant tertiary amine nitrogen atom either protonated or free to balance the charge of the system, and these pendant triamines participate in strong hydrogen bonding interactions in the solid state. The hydrogen bonding ability of the pendant triamines at the second coordination sphere plays a crucial role in the substrate recognition and the stability of the complex-substrate intermediates. The effect of substitution at the phenolate ring towards the redox potential of the metal centre and the catalytic activity of these complexes has been observed. Detailed kinetic studies further disclose the deuterium kinetic isotope effect in which the transfer of the proton along the hydrogen bond from the substrates to the pendant triamine group at the secondary coordination sphere occurs at the key step in the catalytic reaction. The present reactivity nicely resembles the biochemical reactivities in the natural system in which a concerted electron and proton transfer to different species is usually observed. Remarkably, although some sort of influence of the secondary coordination sphere on catalytic activity has been reported mimicking the function of these metalloenzymes, such a direct participation of the secondary coordination sphere, particularly in modelling phenoxazinone synthase, has not been observed to date.
Collapse
Affiliation(s)
- Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa, km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India. and Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India
| |
Collapse
|
8
|
Burlov AS, Vlasenko VG, Koshchienko YV, Uraev AI, Korshunova EV, Milutka MS, Garnovskii DA, Linko IV, Khrustalev VN. SYNTHESIS AND CRYSTAL STRUCTURE OF THE Ni(II) COMPLEX WITH (4Z)-4-[(2-DIETHYLAMINOETHYLAMINO)METHYLENE]- 5-METHYL-2-PHENYLPYRAZOLE-3-ONE. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Uraev AI, Nefedov SE, Lyssenko KA, Vlasenko VG, Ikorskii VN, Garnovskii DA, Makarova NI, Levchenkov SI, Shcherbakov IN, Milenković MR, Borodkin GS. Synthesis, structure, spectroscopic studies and magnetic properties of Cu2N2O4-, Cu2N2O2(S2)-, Cu2N2S4-chromophores based on aminomethylene derivatives of pyrazole-5-one(thione). Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Coordination environment variations in multinuclear trigonal bipyramid Co(II) complexes bearing tetradentate sulfonamide N-donors and phenoxazinone synthase activities. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Burlov AS, Vlasenko VG, Lifintseva TV, Milutka MS, Koshchienko YV, Uraev AI, Garnovskii DA, Rusalev YV, Lazarenko VA, Khrustalev VN. Cu(II) and Co(II) Complexes with (4Z)-4-[(2-Diethylaminoethylamino)methylene]-5-Methyl-2-Phenylpyrazol-3-one: Synthesis, Magnetic Properties, and Crystal Structures. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420070015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Oloyede HO, Woods JAO, Görls H, Plass W, Eseola AO. Influence of structural and thermal factors on phenoxazinone synthase activities catalysed by coordinatively saturated cobalt(III) octahedral complexes bearing diazene–disulfonamide N⌃N⌃N chelators. CR CHIM 2020. [DOI: 10.5802/crchim.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lifintseva TV, Burlov AS, Vlasenko VG, Koshchienko YV, Garnovskii DA, Mashchenko SA, Levchenkov SI, Lazarenko VA, Khrustalev VN, Trigub AL. Cu(II), Ni(II), and Co(II) Complexes of Tetradentate Azomethine Ligands: Chemical and Electrochemical Syntheses, Crystal Structures, and Magnetic Properties. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328419120054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Oloyede HO, Woods JAO, Görls H, Plass W, Eseola AO. New cobalt( ii) coordination designs and the influence of varying chelate characters, ligand charges and incorporated group I metal ions on enzyme-like oxidative coupling activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In transition-metal-mediated catalysis, design of new, well defined coordination architectures and subjecting them to catalysis testing under the same reaction conditions is a necessity tool for improved understanding of desirable active site geometries and characteristics.
Collapse
Affiliation(s)
| | | | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Abiodun Omokehinde Eseola
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
- Materials Chemistry Group
| |
Collapse
|
15
|
Jana NC, Brandão P, Panja A. The first report of a tetra-azide bound mononuclear cobalt(iii) complex and its comparative biomimetic catalytic activity with tri-azide bound cobalt(iii) compounds. NEW J CHEM 2020. [DOI: 10.1039/d0nj02339f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three new azide-bound cobalt(iii) complexes derived from three different triamines with extensive hydrogen bonded supramolecular chain structures and the role of their structural factors in oxidative coupling of o-aminophenols have been reported.
Collapse
Affiliation(s)
- Narayan Ch. Jana
- Postgraduate Department of Chemistry
- Panskura Banamali College
- Panskura RS
- India
| | - Paula Brandão
- Department of Chemistry
- CICECO-Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Anangamohan Panja
- Postgraduate Department of Chemistry
- Panskura Banamali College
- Panskura RS
- India
- Department of Chemistry
| |
Collapse
|
16
|
Moshfegh FZ, Khoram MM, Nematollahi D. Green electrochemical synthesis of silver sulfadiazine microcrystals. RSC Adv 2019; 9:24105-24109. [PMID: 35527859 PMCID: PMC9069660 DOI: 10.1039/c9ra04504j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/28/2019] [Indexed: 01/10/2023] Open
Abstract
Electrochemical synthesis of silver sulfadiazine (AgSD) microcrystals was carried out galvanostatically in a special two-electrode cell equipped with a sacrificial silver rod anode and a stainless steel plate cathode. The cell used in this work consists of a small cylindrical chamber containing aqueous sulfadiazine/sodium nitrate as the anode compartment inside a larger cylindrical chamber containing nitric acid solution as the cathode compartment. The ionic connection of two chambers is carried out through a solvent surface layer. In this study, the effect of the experimental parameters such as applied current density and sodium nitrate concentration as well as nitric acid concentration on the yield and energy consumption of AgSD is discussed. The proposed method is fast and green and has unique features including synthesis in a single step, and no need for a metal salt.
Collapse
|
17
|
Oloyede HO, Woods JAO, Görls H, Plass W, Eseola AO. The necessity of free and uncrowded coordination environments in biomimetic complex models: oxidative coupling by mixed-ligand cobalt(ii) complexes of diazene–disulfonamide. NEW J CHEM 2019. [DOI: 10.1039/c9nj04396a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Importance of molecular access to Co(ii) site is shown by new tridentate disulfonamides, which stabilize uncommon 5-coordinate mixed-ligand vacant-octahedral geometries.
Collapse
Affiliation(s)
| | | | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Abiodun Omokehinde Eseola
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
- Materials Chemistry group
| |
Collapse
|