1
|
Ghana P, Xiong S, Tekpor A, Bailey BC, Spinney HA, Henderson BS, Agapie T. Catalyst Editing via Post-Synthetic Functionalization by Phosphonium Generation and Anion Exchange for Nickel-Catalyzed Ethylene/Acrylate Copolymerization. J Am Chem Soc 2024; 146:18797-18803. [PMID: 38967615 PMCID: PMC11258788 DOI: 10.1021/jacs.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Rapid, efficient development of homogeneous catalysts featuring desired performance is critical to numerous catalytic transformations but remains a key challenge. Typically, this task relies heavily on ligand design that is often based on trial and error. Herein, we demonstrate a "catalyst editing" strategy in Ni-catalyzed ethylene/acrylate copolymerization. Specifically, alkylation of a pendant phosphine followed by anion exchange provides a high yield strategy for a large number of cationic Ni phosphonium catalysts with varying electronic and steric profiles. These catalysts are highly active in ethylene/acrylate copolymerization, and their behaviors are correlated with the electrophile and the anion used in late-stage functionalization.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Shuoyan Xiong
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Adjeoda Tekpor
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Brad C. Bailey
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Heather A. Spinney
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Briana S. Henderson
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Xiong S, Hong A, Ghana P, Bailey BC, Spinney HA, Bailey H, Henderson BS, Marshall S, Agapie T. Acrylate-Induced β-H Elimination in Coordination Insertion Copolymerizaton Catalyzed by Nickel. J Am Chem Soc 2023; 145:26463-26471. [PMID: 37992227 DOI: 10.1021/jacs.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Polar monomer-induced β-H elimination is a key elementary step in polar polyolefin synthesis by coordination polymerization but remains underexplored. Herein, we show that a bulky neutral Ni catalyst, 1Ph, is not only a high-performance catalyst in ethylene/acrylate copolymerization (activity up to ∼37,000 kg/(mol·h) at 130 °C in a batch reactor, mol % tBA ∼ 0.3) but also a suitable platform for investigation of acrylate-induced β-H elimination. 4Ph-tBu, a novel Ni alkyl complex generated after acrylate-induced β-H elimination and subsequent acrylate insertion, was identified and characterized by crystallography. A combination of catalysis and mechanistic studies reveals effects of the acrylate monomer, bidentate ligand, and the labile ligand (e.g., pyridine) on the kinetics of β-H elimination, the role of β-H elimination in copolymerization catalysis as a chain-termination pathway, and its potential in controlling the polymer microstructure in polar polyolefin synthesis.
Collapse
Affiliation(s)
- Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexandria Hong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Priyabrata Ghana
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brad C Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Heather A Spinney
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Hannah Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Briana S Henderson
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Steve Marshall
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Ong HC, Coimbra JTS, Ramos MJ, Xing B, Fernandes PA, García F. Beyond the TPP + "gold standard": a new generation mitochondrial delivery vector based on extended PN frameworks. Chem Sci 2023; 14:4126-4133. [PMID: 37063789 PMCID: PMC10094279 DOI: 10.1039/d2sc06508h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.
Collapse
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - João T S Coimbra
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Pedro A Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo Avda Julian Claveria 8 33006 Asturias Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
4
|
Pisárčik M, Lukáč M, Jampílek J, Bilka F, Bilková A, Pašková Ľ, Devínsky F, Horáková R, Opravil T. Phosphonium surfactant stabilised silver nanoparticles. Correlation of surfactant structure with physical properties and biological activity of silver nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Xiao J, Li Q, Shen R, Shimada S, Han L. Phosphonium Phenolate Zwitterion
vs
Phosphonium Ylide: Synthesis, Characterization and Reactivity Study of a Trimethylphosphonium Phenolate Zwitterion. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901303] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 People's Republic of China
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki 305-8565 Japan
| | - Qiang Li
- College of Chemistry and Chemical EngineeringLiaocheng University, Liaocheng Shandong 252059 People's Republic of China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Shigeru Shimada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki 305-8565 Japan
| | - Li‐Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|