1
|
Kaur M, Virender, Khatkar S, Singh B, Kumar A, Dubey SK. Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018-2023). J Fluoresc 2025; 35:267-289. [PMID: 38038876 DOI: 10.1007/s10895-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Sunita Khatkar
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), Dublin, D24 FKT9, Ireland
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Santosh Kumar Dubey
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| |
Collapse
|
2
|
Saha M, Mandal S, Sarkar S, Biswas A, Ghati A, Cordes DB, Slawin AMZ, Saha NC. Anticancer, antimicrobial and photocatalytic activities of a new pyrazole containing thiosemicarbazone ligand and its Co(III) and Ni(II) complexes: Synthesis, spectroscopic characterization and X-ray crystallography. J Inorg Biochem 2024; 257:112577. [PMID: 38714060 DOI: 10.1016/j.jinorgbio.2024.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
A new pyrazole based thiosemicarbazone ligand, 5-methyl-3-formylpyrazole-N(4)-isopropylthiosemicarbazone, (HMPzNHPri) (compound I), and its cobalt(III) and nickel(II) complexes, [Co(MPzNHPri)2]Cl (compound II) and [Ni(HMPzNHPri)2]Br2 (compound III), respectively, have been synthesized and characterized through various physico-chemical and spectroscopic studies. Both the reported Co(III) and Ni(II) complexes are cationic in nature and behave as 1:1 and 1:2 electrolytes in MeOH, respectively. Electronic spectral features of the complexes have classified them as distorted octahedral ones. IR spectral data (4000-450 cm-1) have suggested a monoprotic tridentate (NNS) function of compound I coordinating to the Co(III) ion via the pyrazolyl (tertiary) ring nitrogen, azomethine nitrogen and thiolato sulphur atom; while for compound III, compound I has been found to act as neutral NNS tridentate one, coordinating to Ni(II) via the pyrazolyl iminic nitrogen, azomethine nitrogen and thioketo sulphur. Structural features of all the compounds are confirmed by the single crystal X-ray data. All the compounds reported here have been found to exhibit significant photocatalytic activity towards degradation of Methylene Blue (MB) under UV radiation. Anticancer activity of all the three compounds against cancer cell lines (HeLa and A549) and a normal cell line (HEK293) have been investigated. Compound II has been found to be more efficient against the human cervical cancer cell (HeLa) and the lung cancer cell (A549) than compounds I and III. The ligand and both the complexes display potential activities against both gram-positive (Bacillus subtilis MTCC 7193) and gram-negative bacteria (E. coli MTCC 1610).
Collapse
Affiliation(s)
- Manan Saha
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India; Government General Degree College, Chapra, Sikra, Padmamala, 741123 Nadia, West Bengal, India
| | - Suman Mandal
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Solanki Sarkar
- Cell & Molecular Biology Laboratory, Department of Zoology, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Arunima Biswas
- Cell & Molecular Biology Laboratory, Department of Zoology, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Amit Ghati
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, 700120, West Bengal, India
| | - David B Cordes
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Nitis Chandra Saha
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India.
| |
Collapse
|
3
|
Jiang QJ, Chuang PM, Wu JY. Fluorescence-Responsive Detection of Ag(I), Al(III), and Cr(III) Ions Using Cd(II) Based Pillared-Layer Frameworks. Int J Mol Sci 2022; 24:ijms24010369. [PMID: 36613812 PMCID: PMC9820227 DOI: 10.3390/ijms24010369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Two Cd(II) based coordination polymers, {Cd3(btc)2(BTD-bpy)2]∙1.5MeOH∙4H2O}n (1) and [Cd2(1,4-ndc)2(BTD-bpy)2]n (2), where BTD-bpy = bis(pyridin-4-yl)benzothiadiazole, btc = benzene-1,3,5-tricarboxylate, and 1,4-ndc = naphthalene-1,4-dicarboxylate, were hydro(solvo)thermally synthesized. Compound 1 has a three-dimensional non-interpenetrating pillared-bilayer open framework with sufficient free voids of 25.1%, which is simplified to show a topological (4,6,8)-connected net with the point symbol of (324256)(344454628)(3442619728). Compound 2 has a three-dimensional two-fold interpenetrating bipillared-layer condense framework regarded as a 6-connected primitive cubic (pcu) net topology. Compounds 1 and 2 both exhibited good water stability and high thermal stability approaching 350 °C. Upon excitation, compounds 1 and 2 both emitted blue light fluorescence at 471 and 479 nm, respectively, in solid state and at 457 and 446 nm, respectively, in the suspension phase of H2O. Moreover, compounds 1 and 2 in the suspension phase of H2O both exhibited a fluorescence quenching effect in sensing Ag+, attributed to framework collapse, and a fluorescence enhancement response in sensing Al3+ and Cr3+, ascribed to weak ion-framework interactions, with high selectivity and sensitivity and low detection limit.
Collapse
|
4
|
Aromatic carboxylic acid derived bimetallic nickel/cobalt electrocatalysts for oxygen evolution reaction and hydrogen peroxide sensing applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Li Q, Xu S, He L, Huang K, Zhang X, Qin D. A new zinc-organic framework with 1D channel for constructing a ratiometric Al 3+-selective sensor and four inputs INHIBIT logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121461. [PMID: 35691163 DOI: 10.1016/j.saa.2022.121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
To develop Al3+ fluorescent sensor is significant because the abnormal levels of Al3+ in environment may pose great threat to human body. Herein, a novel metal-organic framework {Zn(Dpada)(Imdba)·H2O}n (Dpada = 3, 6-di(1H-imidazol-1-yl) pyridazine and Imdba = 2, 2'-iminodibenzoic acid), named Zn-MOF, has been architected with one-dimensional channel under hydrothermal conditions. Zn-MOF exhibits good thermal and solvent stability and can also keep structural integrity over the pH range of 5.0 - 9.0. Fluorescent experiments show that Zn-MOF has high selectivity and sensitivity towards Al3+ via ratiometric fluorescence signal changes (F470 nm/F390 nm) and the detection limit is evaluated to be 0.69 μM. In addition, Zn-MOF performs good recyclability in sensing of Al3+ with at least 5 cycles. Besides, an INHIBIT logic gate has been constructed with chemical ions (Al3+, Cr3+, Fe3+ and Hg2+) as input signals and emission ratio (F470 nm/F390 nm) as output signal. Significantly, Zn-MOF can be applied to tracing Al3+ using real water samples, presenting great potential in water quality monitoring application.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Siji Xu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Liangyu He
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiangyu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
6
|
Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Eu3+ functionalized Gd-BTC: Turn-off fluorescent switch for selectively detecting acetone and Fe3+. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Two mixed-ligands ternary cadmium(II) coordination polymers as fluorescent probes for the efficient detection of enrofloxacin/tetracyclines, Fe3+ and Cr2O72− in aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Gourlaouen C, Schweitzer B, Daniel C. Are luminescent Ru 2+ chelated complexes selective coordinative sensors for the detection of heavy cations? Phys Chem Chem Phys 2022; 24:2309-2317. [PMID: 35015003 DOI: 10.1039/d1cp04442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of [Ru(bpy)2(bpym)]2+ (bpy = 2,2'-bipyridine; bpym = 2,2'-bipyrimidine) to probe specifically heavy cations has been investigated by means of density functional theory for transition metals, group 12 elements and Pb2+. On the basis of the calculated Gibbs free energies of complexation in water it is shown that all reactions are favorable with negative enthalpies except for Hg2+, with the transition metal cations forming stable bi-metallic complexes by coordination to the bpym ligand. Comparison between the optical and photophysical properties of the Ru2+ probe and those of the coordination compounds does not demonstrate a high selectivity due to very similar characteristics of the absorption and emission spectra. Whereas by complexation the lowest metal-to-ligand-charge-transfer (MLCT) shoulder of [Ru(bpy)2(bpym)]2+ at 462 nm is more or less shifted to the red as a function of the cation, the second MLCT band at 415 nm, less sensitive to the complexation, gains in intensity and is slightly blue-shifted. The visible MLCT emission of [Ru(bpy)2(bpym)]2+ at 706 nm is altered by complexation leading to near IR (800-900 nm) emission in most of the coordination compounds. Complexation to some transition metal cations (Fe, Co, Rh and Pd) generates low-lying metal-centered (MC) excited states that quench luminescence. In contrast to the conclusion of experimental findings by Kumar et al. (Chem. Commun. 2014, 50, 8488-8490), [Ru(bpy)2(bpym)]2+ cannot be proposed as a fast and selective probe for monitoring Pd2+ in aqueous media. Indeed, it does not possess the optical and photophysical characteristics necessary to discriminate Pd2+ ions over a variety of other cations.
Collapse
Affiliation(s)
- Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| | - Benjamin Schweitzer
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| |
Collapse
|
10
|
Lin Y, Li Y, Cao Y, Wang X. Two-dimensional MOFs: Design & Synthesis and Applications. Chem Asian J 2021; 16:3281-3298. [PMID: 34453404 DOI: 10.1002/asia.202100884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/25/2021] [Indexed: 12/24/2022]
Abstract
For the past few years, two-dimensional materials have attracted widespread attention owing to their special properties and potential applications. It is well-known that graphene, transition metal disulfide compounds (TMDC), carbon nitride, transition metal carbonitrides (Mxenes), silene and hexagonal boron nitride are typical two-dimensional materials. Compared with these traditional two-dimensional materials, two-dimensional MOF is favored by numerous researchers because of its unique structure. Based on the unique metal ion and organic ligand coordination of MOF and two-dimensional layered structure, the applications of two-dimensional MOF were getting serious, including catalysis, supercapacitor, gas adsorption/separation, sensors and so on. This review presents a relatively comprehensive summary of the design & synthesis and applications of two-dimensional MOF over the past few years. Furthermore, the opportunities and challenges have been discussed to supply a promising prospect to this field.
Collapse
Affiliation(s)
- Yuting Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yuehua Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yu Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| |
Collapse
|
11
|
Cao QL, Yu Q, Han C, Dong GY, Fu L. Sensing and photocatalytic properties of two zinc(II) coordination polymers containing bis(benzimidazole) ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Dual functional fluorosensors based on flexible bis(pyridylbenzimidazole) derivatives with highly selective and sensitive detection of acetylacetone and Fe3+ ions. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Khanpour Matikolaei M, Binaeian E. Boosting Ammonia Uptake within Metal-Organic Frameworks by Anion Modulating Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27159-27168. [PMID: 34087069 DOI: 10.1021/acsami.1c03242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia with toxic and corrosive features needs advanced protective materials and removal tools, although it is a vital component in human food supply processes. So, to satisfy these requirements, materials with high adsorption capacity and affinity for ammonia should be developed. The present research has been focused on a series zinc-based metal-organic frameworks (MOF) containing mixed ligands, biphenyl dicarboxylic acid (BPDA) and tris(4-(4H-1,2,4-triazol-4-yl)phenyl)amine (TTPA), which are modulated by different anions including CH3COO-, CF3COO-, and CF3SO3-. Ammonia uptake capacity was measured via static and dynamic conditions under 50% relative humidity. Among all compounds, CF3SO3- anion could enhance the ammonia uptake capacity of MOFs up to 177.85 and 349 mg/g during static and breakthrough measurements, respectively, so that 83.30% of the total uptake capacity (at P/Po = 1.0 and 298 K) was achieved at low relative pressure range (up to 0.1). The isosteric heats of ammonia adsorption on PFC-27 and derivatives were calculated in the range of 7.03-10.16 kJ mol-1 so that they increased upon CF3SO3-, CF3COO-, and CH3COO- ion incorporation. This is potentially beneficial for enhanced ammonia adsorption. Interestingly, adsorption capacities were retained with only slight changes after five cycles and three regeneration temperatures, 25 °C, 60 °C, and 120 °C, under vacuum. The special affinity for NH3 adsorption and MOF phase stability after desorption is clearly proved by FTIR spectra and PXRD analysis, respectively. Generally, the results suggest that ion insertion modification is an efficient strategy for enhancement of MOF adsorption performance.
Collapse
Affiliation(s)
- Mojtaba Khanpour Matikolaei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, China
| | - Ehsan Binaeian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, China
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, 4765161964, Iran
| |
Collapse
|
14
|
She M, Wang Z, Chen J, Li Q, Liu P, Chen F, Zhang S, Li J. Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213712] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
|
16
|
Luo J, Liu BS, Zhang XR, Liu RT. A new fluorescent sensor constructed by Eu3+ post-functionalized metal-organic framework for sensing Ag+ with high selectivity and sensitivity in aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Zhou Y. Two Co(II)-coordination polymers: reducing the inflammasome activation and exerting treatment activity on age-related macular degeneration. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1862230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ying Zhou
- College of Industry and Commerce, Shandong Management University, Jinan, Shandong, China
| |
Collapse
|
18
|
Zhai JB, Zhou J, Zhang B, Wang X. Coordination-induced assembly of two coordination polymers: crystal structures and anticancer activity on nasopharyngeal carcinoma. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1758940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jing-Bo Zhai
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, Inner Mongolia, China
- Medical College of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Jie Zhou
- ENT Department, Chongqing National Hospital, Chongqing, China
| | - Bo Zhang
- Department of Neurology, Daqing Oilfiled General Hospital, Daqing, Heilongjiang, China
| | - Xue Wang
- Operating Room, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Liu Y, Ren L, Cui GH. Two Co( ii)-based coordination polymers as multi-responsive luminescent sensors for the detection of levofloxacin, benzaldehyde and Fe 3+ ions in water media. CrystEngComm 2021. [DOI: 10.1039/d1ce01169c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two CPs display excellent sensitivity, selectivity and low limits of detection for detection of LEV, BZH and Fe3+ ions.
Collapse
Affiliation(s)
- Ya Liu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-City, Tangshan, Hebei, 063210, P. R. China
| | - Li Ren
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-City, Tangshan, Hebei, 063210, P. R. China
| | - Guang-Hua Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-City, Tangshan, Hebei, 063210, P. R. China
| |
Collapse
|
20
|
Rani S, Sharma B, Malhotra R, Kumar S, Varma RS, Dilbaghi N. Sn-MOF@CNT nanocomposite: An efficient electrochemical sensor for detection of hydrogen peroxide. ENVIRONMENTAL RESEARCH 2020; 191:110005. [PMID: 32926892 DOI: 10.1016/j.envres.2020.110005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 05/11/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
A novel approach for the assembly of Sn-based metal organic framework (Sn-MOF) via solvothermal method and its composite (Sn-MOF@CNT) with electroactive material, carbon nanotubes (CNT) by sonochemical means, is described that is useful for hydrogen peroxide sensing; large surface area and pore volume of Sn-MOF were exploited where in the crystallinity of the Sn-MOF was preserved upon inclusion of CNT over its surface. The surface morphology and structural analysis of Sn-MOF and its composite form, Sn-MOF@CNT, were determined analytically through Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Brunauer-Emmett-Teller and Energy-dispersive X-ray spectroscopy (EDX). The developed Sn-MOF@CNT sensor was expansively used to determine and optimize the effect of scan rate, concentration and detection limits including the EDX and SEM analysis of used Sn-MOF@CNT nanocomposite's post hydrogen peroxide sensing. The electrochemical sensing with Sn-MOF@CNT revealed a lower limit of detection ~4.7 × 10-3 μM with wide linear range between 0.2 μM and 2.5 mM. This study has explored a new strategy for the deposition of CNT over Sn-MOF via a simple sonochemical methodology for successful electrochemical detection of H2O2, an approach that can be imitated for other applications.
Collapse
Affiliation(s)
- Sushma Rani
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Bharti Sharma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
21
|
In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Mikrochim Acta 2020; 187:670. [PMID: 33219870 DOI: 10.1007/s00604-020-04634-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
A new electrocatalytic biosensor (MOF-74(Cu) NS-CC) based on the in situ deposition of MOF-74(Cu) nanosheet on carbon cloth via a bottom-up synthetic approach in a glass tube was developed. The electrocatalytic activity of the deposited MOF-74(Cu) NS was demonstrated in the oxidation of glucose to gluconate under alkaline conditions. The results revealed that the proposed method of in situ formation of MOF-74(Cu) NS onto a carbon cloth surface in a multi-layer solution is capable to generate a stable MOF-74(Cu) NS-CC electrode with excellent sensing performance. When the as-synthesized MOF-74(Cu) NS-CC was applied directly as the working electrode for glucose sensing, it showed much higher conductivity and redox activity than MOF-74(Cu) NS-GCE. With the potential applied at 0.55 V (vs. Ag/AgCl), this new electrocatalytic biosensor exhibits an excellent linear relationship between current density and concentration of glucose. Moreover, a wide linear range of detection (1.0 to 1000 μM) was observed. The limit of detection was found to be 0.41 μM (S/N = 3). The response sensitivity is 3.35 mA mM-1 cm-2 when the concentration of glucose is in the range 1-100 μM and 3.81 mA mM-1 cm-2 for the 100-1000 μM concentration range. This study provides a low-cost, easy to prepare, and reproducible methodology for the synthesis of highly redox-active nanomaterials based on the in situ formation of two-dimensional MOF-74(Cu) NS for the development of new electrocatalytic biosensors. Graphical abstract.
Collapse
|
22
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
23
|
Fu C, Sun K, Deng Y. Two new mixed-ligand coordination polymers: structural characterization and treatment effect on acute adnexitis via inhibiting fitZ gene expression in Staphylococcus aureus. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1727517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chunfeng Fu
- Obstetrics Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Sun
- Obstetrics Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongfang Deng
- Obstetrics Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Bharati AK, da Silva MFCG, Siddiqui KA. A new Cd-coordination polymer based on 1,3-di(4-pyridyl)propane: synthesis, crystal structure, thermogravimetric analysis, and photoluminescent properties. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1818728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ashok Kumar Bharati
- Department of Chemistry, National Institute of Technology Raipur, Raipur, Chhattisgarh, India
| | | | - Kafeel Ahmad Siddiqui
- Department of Chemistry, National Institute of Technology Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
25
|
Qiu T, Yi X, Xu L, Wang L, Hu X, Li X. Coordination polymers constructed from 5-nitro-1,2,3-benzenetricarboxylic acid: crystal structures and treatment effect on nephrotic syndrome by regulating intestinal flora and recovering Th17/Treg balances. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1722696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tingting Qiu
- Department of Kidney and Immune, Children’s Hospital of Soochow University, Suzhou, China
| | - Xin Yi
- Department of Human Anatomy, Medical School, Nantong University, Nantong, China
| | - Lulu Xu
- Nantong University Library, Nantong, China
| | - Lifeng Wang
- Department of Kidney and Immune, Children’s Hospital of Soochow University, Suzhou, China
| | - Xihui Hu
- Department of Kidney and Immune, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaozhong Li
- Department of Kidney and Immune, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Synthesis, structure diversity, and dye adsorption and luminescent sensing properties of Zinc (II) coordination polymers based on 1,3,5-tris(1-imidazolyl)benzene and 1,3-bis(1-imidazolyl)toluene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Three water-stable luminescent Zn(II) coordination polymers for highly sensitive and selective sensing of acetylacetone and Fe3+ ions. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Antiparasitic, anti-inflammatory and cytotoxic activities of 2D coordination polymers based on 1H-indazole-5-carboxylic acid. J Inorg Biochem 2020; 208:111098. [PMID: 32454248 DOI: 10.1016/j.jinorgbio.2020.111098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
We report on the formation of two novel multifunctional isomorphous (4,4) square-grid 2D coordination polymers based on 1H-indazole-5-carboxylic acid. To the best of our knowledge, these complexes are the first examples of 2D-coordination polymers constructed with this novel ligand. We have analysed in detail the structural, magnetic and anti-parasitic properties of the resulting materials. In addition, the capability of inhibiting nitric oxide production from macrophage cells has been measured and was used as an indirect measure of the anti-inflammatory response. Finally, the photocatalytic activity was measured with a model pollutant, i.e. vanillic acid (phenolic compound), with the aim of further increasing the functionalities and applicability of the compounds.
Collapse
|
29
|
Beheshti A, Panahi F, Soleymani-Babadi S, Mayer P, Lipkowski J, Motamedi H, Samiee S. Rational synthesis, structural characterization, theoretical studies, antibacterial activity and selective dye absorption of new silver coordination polymers generated from a flexible bis (imidazole-2-thione) ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Syntheses, structural diversities and photocatalytic properties of three nickel(II) coordination polymers based semi-bis(benzimidazole) and aromatic dicarboxylic acid ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Zhou YH, Xu Y, Xue ZQ, Shi JQ, Su Y, Sun ML, Wang SH, Wang LL, Wang QQ, Wei YJ. Syntheses, crystal structures and properties of four metal coordination complexes constructed from aromatic carboxylate and benzimidazole-based ligands. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00387-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Qu YH, Yang YJ, Dong GY. Synthesis, structures, and photocatalytic properties of three new nickel(II) coordination polymers containing bis(benzimidazole) ligands with different coordination architectures. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Construction of a series of Zn(II) and Cd(II) coordination polymers bearing 1,3-bis(benzimidazol-1-yl)-2-propanol ligands: Syntheses, crystal structures, and sensing properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Wang YN, Wang SD, Wang WJ, Hao XX, Qi H. Ln-CPs constructed from unsymmetrical tetracarboxylic acid ligand: Tunable white-light emission and highly sensitive detection of CrO 42-, Cr 2O 72-, MnO 4- in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117915. [PMID: 31887675 DOI: 10.1016/j.saa.2019.117915] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
A series of isostructural lanthanide coordination polymers (Ln-CPs), [Ln(Hbptc)(H2O)4]·H2O [Ln = Er (1), Pr (2), Dy (3), Sm (4), Gd (5), Nd (6) and Tb(7); H4bptc = 2,3,3',4'-biphenyl tetracarboxylic acid] have been isolated based on an unsymmetrical tetracarboxylic acid. Single-crystal X-ray diffraction analysis reveals that all CPs featured a two dimensional (2D) layer with (6, 6, 6)-connected 63 topology. Luminescent spectra demonstrate that CPs 1-7 exhibit impressive UV-visible luminescence in the solid state at room temperature. More significantly, a single-component white-light material with International Commission on Illumination (CIE) coordinates of (0.335, 0.334) for 4 (Sm-CP), very closing to the pure white-light of (0.333, 0.333) was obtained by finely tuning of the excitation wavelength. In addition, the luminescent detection for anions of 7 is investigated. Fluorescence measurements show that 7 can detect oxoanion pollutants Cr2O72-, CrO42-, and MnO4- anions in aqueous solutions with high selectivity and sensitivity, which suggests that the Tb-CP is a promising functional luminescence probe for toxic oxoanions. The possible mechanisms of the quenching effect were also discussed in detail.
Collapse
Affiliation(s)
- Yan-Ning Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Shao-Dan Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wen-Jing Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xuan-Xuan Hao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - He Qi
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
35
|
Srivastava AK, Ghosh S, Pal S. Coordination mode variation of oximate in complexes of VO(OMe)2+ and VO2+ with biacetylmonoxime salicyloylhydrazone: Structural confirmation, properties and photocatalytic applications. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Qu Y, Zhao K, Wang C, Wu Y, Xia L, Wu H. Synthesis, crystal structure, fluorescent and electrochemical properties of three silver(I) complexes with 2,2’-(1,4-butanediyl)bis-1,3-benzimidazole bridging ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Solvothermal synthesis, structural characterization and photocatalysis of fibrous cobalt(II) diphenylphosphinate. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Li X, Huang K, Peng M, Han D, Qiu Q, Jing L, Qin D. Metal-organic frameworks based on flexible bis(imidazole) and dicarboxylic ligands and their applications as selective sensors for magnesium nitrate. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Zinc-orotate coordination polymer: synthesis, thermogravimetric analysis and luminescence properties. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2197-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Khullar S, Thakur S, Mandal SK. Synthesis and structural characterization of Zn(II) and Cd(II) ion directed coordination networks and their template-free fabrication to metal oxide nanomaterials. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Chang J, Zhang SZ, Wu Y, Zhang HJ, Sun YX. Three supramolecular trinuclear nickel(II) complexes based on Salamo-type chelating ligand: syntheses, crystal structures, solvent effect, Hirshfeld surface analysis and DFT calculation. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00379-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Zhu H, Han C, Li YH, Cui GH. Two new coordination polymers containing long flexible bis(benzimidazole) ligand as luminescent chemosensors for acetylacetone and Hg(II) ions detection. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121132] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Chakraborty S, Rayalu S. Selective and sensitive chemosensor for Iron(III) in pyrene homologs applicable for ratiometric detection of Fe3+ in vegetables and fruit juices. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Li A, Hao Z, Han C, Cui G. Cobalt(II) and silver(I) coordination polymers containing flexible bis (benzimidazol‐1‐yl)hexane ligands: synthesis, crystal structures, sensing and photocatalytic properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ai‐Ling Li
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic MaterialsNorth China University of Science and Technology No. 21 Bohai Road, Caofeidian new‐city Tangshan Hebei 063210 P. R. China
| | - Zeng‐Chuan Hao
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic MaterialsNorth China University of Science and Technology No. 21 Bohai Road, Caofeidian new‐city Tangshan Hebei 063210 P. R. China
| | - Chao Han
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic MaterialsNorth China University of Science and Technology No. 21 Bohai Road, Caofeidian new‐city Tangshan Hebei 063210 P. R. China
| | - Guang‐Hua Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic MaterialsNorth China University of Science and Technology No. 21 Bohai Road, Caofeidian new‐city Tangshan Hebei 063210 P. R. China
| |
Collapse
|
45
|
Shi YS, Liu D, Fu L, Li YH, Dong GY. Five water-stable luminescent CdII-based metal–organic frameworks as sensors for highly sensitive and selective detection of acetylacetone, Fe3+ and Cr2O72− ions. CrystEngComm 2020. [DOI: 10.1039/d0ce00140f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Five CdII-based MOFs with different topologies were prepared, in which 2 and 3 are rare examples which display excellent sensitivity, selectivity, recyclability and structural stability for detection of acac/Fe3+ and acac/Cr2O72−, respectively.
Collapse
Affiliation(s)
- Yong-Sheng Shi
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Dong Liu
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Lianshe Fu
- Department of Physics and CICECO-Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Yue-Hua Li
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Gui-Ying Dong
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| |
Collapse
|
46
|
|
47
|
Yang YJ, Li YH, Liu D, Cui GH. A dual-responsive luminescent sensor based on a water-stable Cd(ii)-MOF for the highly selective and sensitive detection of acetylacetone and Cr2O72− in aqueous solutions. CrystEngComm 2020. [DOI: 10.1039/c9ce01546a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two water-stable cadmium(ii) MOFs were synthesized and characterized. 1 is the first dual-function Cd(ii)-MOF luminescent sensor for sensing acetylacetone and Cr2O72− in aqueous solution with high sensitivity and selectivity and good recyclability.
Collapse
Affiliation(s)
- Ying-Jie Yang
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Yue-Hua Li
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Dong Liu
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Guang-Hua Cui
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| |
Collapse
|
48
|
Shi YS, Li YH, Cui GH, Dong GY. New two-dimensional Cd(ii) coordination networks bearing benzimidazolyl-based linkers as bifunctional chemosensors for the detection of acetylacetone and Fe3+. CrystEngComm 2020. [DOI: 10.1039/c9ce01819k] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new CPs, namely {[Cd(L)(1,4-PDA)]·0.7(C2H5OH)}n (1) and {[Cd(L)0.5(1,8-NDC)·H2O]}n (2) were fabricated. 1 shows a sql 2D network. 2 shows a 2D 3,4L83 network. Both 1 and 2 were highly selective and sensitive fluorescent chemosensors toward acetylacetone and Fe3+.
Collapse
Affiliation(s)
- Yong-Sheng Shi
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Yue-Hua Li
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Guang-Hua Cui
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Gui-Ying Dong
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| |
Collapse
|
49
|
Li AL, Qu YH, Fu L, Han C, Cui GH. Multidimensional luminescent cobalt(ii)-coordination polymers as sensors with extremely high sensitivity and selectivity for detection of acetylacetone, benzaldehyde and Cr2O72−. CrystEngComm 2020. [DOI: 10.1039/d0ce00077a] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three new ternary cobalt(ii) CPs were synthesized. 1 exhibits a 3D pcu framework, 2 possesses a 2D hcb layer and 3 is a 1D chain structure. 1, 2, and 3 can be effective luminescent probes for sensing acetylacetone, benzaldehyde and Cr2O72− ions.
Collapse
Affiliation(s)
- Ai-Ling Li
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Yun-Hua Qu
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Lianshe Fu
- Department of Physics and CICECO-Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Chao Han
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Guang-Hua Cui
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| |
Collapse
|
50
|
Wei XJ, Hao ZC, Han C, Cui GH. Syntheses, crystal structures and photocatalytic properties of three zinc (II) coordination polymers constructed by mixed ligands. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|