1
|
de Souza Santos LV, Lebron YAR, Moreira VR, Jacob RS, Martins DCDS, Lange LC. Norfloxacin and gentamicin degradation catalyzed by manganese porphyrins under mild conditions: the importance of toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16203-16212. [PMID: 34647211 DOI: 10.1007/s11356-021-16850-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The current work assessed the degradation degree and the degradation products derived from norfloxacin (NOR) and gentamicin (GEN) using iodosylbenzene and iodobenzene diacetate, in the presence of manganese porphyrin as catalysts. Better results for NOR degradation (> 80%) were obtained when more hydrophobic porphyrins were employed. β-brominated manganese porphyrins showed a lower GEN degradation (~ 25%) than the non-brominated ones (~ 35%), probably due to their steric hindrance. In any case, complete mineralization was achieved neither for NOR nor for GEN, and the assignment of the generated products, complemented by the study of their toxicity, was an important step performed. From the obtained results, no correlation was found between the number of identified products and the reported toxicity value (rSpearman,NOR = 0.006; p value = 0.986 and rSpearman,GEN = - 0,198; p value = 0.583), which reinforces the idea of synergism and antagonistic phenomena. The higher degradation degree could have led to products of lower steric hindrance and easier penetration into the A. fischeri cells, which subsequently led to an increase in toxicity for these experiments. In most cases, the products presented higher toxicity than the original compound, which raises a concern about their occurrence in environmental matrices.
Collapse
Affiliation(s)
- Lucilaine Valéria de Souza Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil.
- Department of Chemical Engineering, Pontifícia Universidade Católica de Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil.
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| | - Raquel Sampaio Jacob
- Department of Civil Engineering, Pontifícia Universidade Católica de Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil
| | | | - Lisete Celina Lange
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| |
Collapse
|
2
|
Tessaro PS, Meireles AM, Guimarães AS, Schmitberger B, Lage ALA, Patrício PSDO, Martins DCDS, DeFreitas-Silva G. The polymerization of carvacrol catalyzed by Mn-porphyrins: obtaining the desired product guided by the choice of solvent, oxidant, and catalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj03171j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Less polar solvents could modulate the catalytic activity of Mn(iii)-porphyrins in carvacrol's oxidation leading to polymer/oligomer formation instead of thymoquinone formation.
Collapse
Affiliation(s)
- Patrícia Salvador Tessaro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Alexandre Moreira Meireles
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Adriano Silva Guimarães
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Bernardo Schmitberger
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Ana Luísa Almeida Lage
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | | | - Dayse Carvalho da Silva Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Gilson DeFreitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| |
Collapse
|
3
|
Meireles AM, Guimarães AS, Querino GR, Castro KADDF, Nakagaki S, DeFreitas‐Silva G. Exploring manganese pyridylporphyrin isomers for cyclohexane oxidation: First‐generation catalysts are better than third‐generation ones. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexandre Moreira Meireles
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Adriano Silva Guimarães
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Guilherme Rabelo Querino
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | | | - Shirley Nakagaki
- Laboratório de Bioinorgânica e Catálise, Departamento de Química, Centro Politécnico Universidade Federal do Paraná Curitiba Paraná Brazil
| | - Gilson DeFreitas‐Silva
- Departamento de Química, Instituto de Ciências Exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
4
|
Abutaleb A, Ali MA. A comprehensive and updated review of studies on the oxidation of cyclohexane to produce ketone-alcohol (KA) oil. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Oxidation of cyclohexane is an essential chemical reaction for the industrial manufacture of cyclohexanol and cyclohexanone. These two compounds, together known as ketone–alcohol (KA) oil, are the main feedstock for nylon 6 and nylon 6,6 productions. Several types of catalysts and reaction conditions have been used for cyclohexane oxidation. This paper presents a thorough literature review of catalytic materials used for cyclohexane oxidation to produce KA oil using oxygen, air and other oxidizing agents as well as utilizing different solvents. This review covers research and development reported over the years 2014–2020. This review aims to comprehend the type of catalysts, solvents, oxidants and other reaction parameters used for the oxidation of cyclohexane. Three types of cyclohexane oxidation processes namely thermocatalytic, photocatalytic and microwave-assisted catalytic have been reported. The results of the review showed that metal and metal oxide loaded silica catalysts performed excellently and provided high selectivity of KA oil and cyclohexane conversion. The use of peroxides is not feasible due to their high price compared to air and oxygen. Gold nanoparticles supported on silica performed with high selectivity and good conversion. The use of hydrochloric acid as an additive was found very effective to enhance the photocatalytic oxidation of cyclohexane. Water on the catalyst surface enhanced the reactivity of the photocatalysts since it helps in the generation of hydroxyl radicals.
Collapse
Affiliation(s)
- Ahmed Abutaleb
- Chemical Engineering Department, College of Engineering , Jazan University , Gizan 45142 , Saudi Arabia
| | - Mohammad Ashraf Ali
- Chemical Engineering Department, College of Engineering , Jazan University , Gizan 45142 , Saudi Arabia
| |
Collapse
|
5
|
de Melo CN, Moreira Meireles A, da Silva VS, Robles-Azocar P, DeFreitas-Silva G. Manganese complex catalyst for valencene oxidation: The first use of metalloporphyrins for the selective production of nootkatone. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Meireles AM, Martins DCDS. Classical and green cyclohexane oxidation catalyzed by manganese porphyrins: Ethanol as solvent and axial ligand. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Theoretical Study on Electronic Structural Properties of Catalytically Reactive Metalloporphyrin Intermediates. Catalysts 2020. [DOI: 10.3390/catal10020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metalloporphyrins have attracted great attention in the potential application of biomimetic catalysis. Especially, they were widely investigated as green catalysts in the chemical oxidation of various hydrocarbons through the catalytic activation of molecular oxygen. The structural properties of active central metal ions were reported to play a decisive role in catalytic activity. However, those delicate structural changes are difficult to be experimentally captured or elucidated in detail. Herein, we explored the electronic structural properties of metalloporphyrins (metal porphyrin (PMII, PMIIICl)) and their corresponding catalytically active intermediates (metal(III)-peroxo(PMIII-O2), metal(III)-hydroperoxo(PMIII-OH), and metal(IV)-oxo(PMIV=O), (M=Fe, Mn, and Co)) through the density functional theory method. The ground states of these intermediates were determined based on the assessment of relative energy and the corresponding geometric structures of ground states also further confirmed the stability of energy. Furthermore, our analyses of Mulliken charges and frontier molecular orbitals revealed the potential catalytic behavior of reactive metalloporphyrin intermediates.
Collapse
|