Improvement of curcumin loading into a nanoporous functionalized poor hydrolytic stable metal-organic framework for high anticancer activity against human gastric cancer AGS cells.
Colloids Surf B Biointerfaces 2022;
212:112340. [PMID:
35074641 DOI:
10.1016/j.colsurfb.2022.112340]
[Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/14/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022]
Abstract
Two low water-stable nanoporous Zn-based Metal-Organic Frameworks (MOFs) with and without the NO2-functional group were synthesized by the reflux method and used to encapsulate curcumin (CCM). The characterization and application of these Zn-based MOFs (DMOF-1 and DMOF-1-NO2) have been studied by FT-IR, PXRD,1H NMR, N2 adsorption, SEM, UV-vis, and fluorescence microscopy methods. The amount of drug loading of DMOF-1 and DMOF-1-NO2 is 22.4 and 28.3 wt%, respectively. The drug loading results were also investigated by the computational simulation method. These kinds of MOFs have poor stability against water. This instability was used as a key to solving the problem of the low solubility of CCM as a model of hydrophobic cancer drug in a water-based medium. The obtained results confirmed that these poor hydrolytic MOFs could improve the solubility of CCM and enhance cytotoxicity against cancer cells (AGS) in comparison with free CCM. These results can prepare a new opportunity to increase the anticancer activity of hydrophobic drugs.
Collapse