Garcia NA, Tafuri VC, Abdu RB, Roberts CC. Elucidating the Impact of Rare Earth or Transition Metal Identity on the Physical and Electronic Structural Properties of a Series of Redox-Active Tris(amido) Complexes.
Inorg Chem 2024;
63:15283-15293. [PMID:
39102431 DOI:
10.1021/acs.inorgchem.4c01909]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The use of redox-active ligands with the f-block elements has been employed to promote unique chemical transformations and explore their unique emergent electronic properties for a myriad of applications. In this study, we report eight new tris(amido) metal complexes: 1-Ln (Ln = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+), 1-La, and 1-Ti (an early transition metal analogue). The one-electron oxidation of the tris(amido) ligand was conducted to generate semi-iminato complexes 2-Ln, 2-La, and 2-Ti, and these complexes were studied using EPR. Tris(amido) complexes 1-Ln, 1-La, and 1-Ti were fully characterized using a range of spectroscopic (NMR and UV-vis/NIR) and physical techniques (X-ray diffraction and cyclic voltammetry, with the exception of 1-La). Computational methods were employed to further elucidate the electronic structures of these complexes. Lastly, complexes 1-Ln, 1-La, and 1-Ti were probed as catalysts for alkyl-alkyl cross-coupling, and the initial rate of the reaction was measured to explore the influence of the metal ion.
Collapse