1
|
Panda S, Kumari S, Dixit M, Sharma NK. N-Salicyl-AA n-picolamide Foldameric Peptides Exhibit Quorum Sensing Inhibition of Pseudomonas aeruginosa (PA14). ACS OMEGA 2023; 8:30349-30358. [PMID: 37636905 PMCID: PMC10448664 DOI: 10.1021/acsomega.3c03404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
An organic acid, salicylic acid, and its derivatives are constituents of various natural products possessing remarkable bioactivity. O-Acetyl salicylate (aspirin) is a well-known life-saving drug. Its peptide derivative salicylamide has also been explored in the designing of peptide-based therapeutic drugs. An organic base, picolylamine has been recently explored for designing diagnostic probes. However, both the acid and base have common features as metal chelating with coordinating metals. Thus, these scaffolds could be used for designing inhibitors of various metalloenzymes. Their characteristic properties encourage us to design peptides containing both scaffolds (salicylic acid and picolylamine) at opposite terminals. So far there is no report available on such conjugated peptides. This report describes the synthesis, conformational analysis, and biochemical assessment of rationally designed N-salicyl-AAn-picolamide peptides. Pleasantly, we have obtained the crystal structures of representative peptides that confirm their roles in conformational changes. Our biological assessment as quorum sensing inhibitors has revealed that their di/tripeptides inhibit quorum sensing of the pathogenic bacterium PA14 strain. Hence, these peptides have promising foldameric and therapeutic values.
Collapse
Affiliation(s)
- Subhashree
S. Panda
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO: Jatani, Bhubaneswar 752050, Odisha, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| | - Supriya Kumari
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO: Jatani, Bhubaneswar 752050, Odisha, India
- School
of biological Sciences, National Institute
of Science Education and Research (NISER), PO: Jatani, Bhubaneswar 752050, Odisha, India
| | - Manjusha Dixit
- School
of biological Sciences, National Institute
of Science Education and Research (NISER), PO: Jatani, Bhubaneswar 752050, Odisha, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| | - Nagendra K. Sharma
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO: Jatani, Bhubaneswar 752050, Odisha, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Ouyang R, Wang S, Feng K, Liu C, Silva DZ, Chen Y, Zhao Y, Liu B, Miao Y, Zhou S. Potent saccharinate-containing palladium(II) complexes for sensitization to cancer therapy. J Inorg Biochem 2023; 244:112205. [PMID: 37028114 DOI: 10.1016/j.jinorgbio.2023.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Palladium(II) (PdII) complexes are among the most promising anticancer compounds. Both 2`-benzoylpyridine thiosemicarbazone (BpT) and saccharinate (Sac) are efficient metal chelators with potent anticancer activity. To explore a more effective new anticancer drug, we synthesized a series of Sac and BpT-containing PdII complexes coordinated with thiosemicarbazone (TSC)-derived ligands, and characterized them through nuclear magnetic resonance (NMR), Fourier transformed infrared spectroscopy (FT-IR), elemental analysis, ultraviolet-visible spectroscopy (UV-Vis) and thermogravimetric analysis (TGA). Each target complex was composed of PdII, BpT, and one or two Sac molecules. Both the in vitro and in vivo anti-growth effects of those ligands and the obtained PdII complexes were investigated in the human lung adenocarcinoma cell lines A549 and Spc-A1. The coordination of PdII with the TSC-derivatives and Sac resulted in clearly greater anticancer activity than single ligands. These compounds were demonstrated to be safe for 293 T normal human kidney epithelial cells. The introduction of Sac into the TSC-derived PdII complex significantly enhanced anti-growth effects, and induced apoptosis of human lung cancer cells in vitro and in vivo in a dose dependent manner. Moreover, the PdII complex containing two Sac molecules showed the most promising therapeutic effects, thereby confirming that Sac increases the cancer therapeutic efficacy of PdII complexes and providing a new strategy for exploring anticancer drugs for potential clinical treatment.
Collapse
|
3
|
Biological Evaluation of Platinum(II) Sulfonamido Complexes: Synthesis, Characterization, Cytotoxicity, and Biological Imaging. Bioinorg Chem Appl 2022; 2022:7821284. [PMID: 36147773 PMCID: PMC9489406 DOI: 10.1155/2022/7821284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Platinum-based compounds are actively used in clinical trials as anticancer agents. In this study, two novel platinum complexes, (C1 = [PtCl2(N(SO2quin)dpa)], C2 = [PtCl2(N(SO2azobenz)dpa)]) containing quinoline and azobenzene appended dipicolylamine sulfonamide ligands were synthesized in good yield. The singlet attributable to methylene CH2 protons of the ligands of C1 and C2 appears as two doublets in 1H NMR spectra, which confirms the presence of magnetically nonequivalent protons upon coordination to platinum. Structural data of N(SO2quin)dpa (L1), N(SO2azobenz)dpa (L2) and PtCl2(N(SO2quin)dpa) confirmed the formation of the desired compounds. Time-dependent density functional theory calculations suggested that the excitation of L1 show quin-unit-based π⟶π∗ excitations (i.e., ligand-centered charge transfer, LC), while C1 shows the metal-ligand-to-ligand charge-transfer (MLLCT) character. L1 displays intense fluorescence from the 1LC excited state, while C1 gives phosphorescence from the 3LC state. Mammalian cell toxicity of ligands and complexes was assessed with NCI–H292 nonsmall-cell lung cancer cells. Further, C1 and C2 showed significantly low IC50 values compared with N(SO2azobenz)dpa and PtCl2(N(SO2quin)dpa). Fluorescence imaging data of both ligands and complexes revealed the potential fluorescence activity of these compounds for biological imaging. All four compounds are promising novel candidates that can be further investigated on their usage as potential anticancer agents and cancer cell imaging agents.
Collapse
|
4
|
Capulín Flores L, Paul LA, Siewert I, Havenith R, Zúñiga-Villarreal N, Otten E. Neutral Formazan Ligands Bound to the fac-(CO) 3Re(I) Fragment: Structural, Spectroscopic, and Computational Studies. Inorg Chem 2022; 61:13532-13542. [PMID: 35969867 PMCID: PMC9438031 DOI: 10.1021/acs.inorgchem.2c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal complexes with ligands that coordinate via the nitrogen atom of azo (N═N) or imino (C═N) groups are of interest due to their π-acceptor properties and redox-active nature, which leads to interesting (opto)electronic properties and reactivity. Here, we describe the synthesis and characterization of rhenium(I) tricarbonyl complexes with neutral N,N-bidentate formazans, which possess both N═N and C═N fragments within the ligand backbone (Ar1-NH-N═C(R3)-N═N-Ar5). The compounds were synthesized by reacting equimolar amounts of [ReBr(CO)5] and the corresponding neutral formazan. X-ray crystallographic and spectroscopic (IR, NMR) characterization confirmed the generation of formazan-type species with the structure fac-[ReBr(CO)3(κ2-N2,N4(Ar1-N1H-N2═C(R3)-N3═N4-Ar5))]. The formazan ligand coordinates the metal center in the 'open' form, generating a five-membered chelate ring with a pendant NH arm. The electronic absorption and emission properties of these complexes are governed by the presence of low-lying π*-orbitals on the ligand as shown by DFT calculations. The high orbital mixing between the metal and ligand results in photophysical properties that contrast to those observed in fac-[ReBr(CO)3(L,L)] species with α-diimine ligands.
Collapse
Affiliation(s)
- Liliana Capulín Flores
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510 México, D.F., México
| | - Lucas A Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Remco Havenith
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Noé Zúñiga-Villarreal
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510 México, D.F., México
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Ranasinghe K, Marzilli PA, Pakhomova S, Marzilli LG. New fac-[ReI(CO)3(Ltri)]Y complexes of linear N,N′,N′′-tridentate ligands (Ltri) with terminal imidazolyl or pyridyl ring (N and N′′) and central tertiary sulfonamide (N′) N-donors. Effects of size and substituents of the terminal N-donor rings and the rarely found direct sulfonamide N to metal bond. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Thushara N, Darshani T, Samarakoon SR, Perera IC, Fronczek FR, Sameera WMC, Perera T. Synthesis, characterization and biological evaluation of dipicolylamine sulfonamide derivatized platinum complexes as potential anticancer agents. RSC Adv 2021; 11:17658-17668. [PMID: 35480201 PMCID: PMC9033217 DOI: 10.1039/d1ra00842k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Three new Pt complexes, [PtCl2(N(SO2(2-nap))dpa)], [PtCl2(N(SO2(1-nap))dpa)] and [PtCl2(N(SO2pip)dpa)], containing a rare 8-membered ring were synthesized in good yield and high purity by utilizing the ligands N(SO2(2-nap))dpa, N(SO2(1-nap))dpa and N(SO2pip)dpa, which contain a dipicolylamine moiety. Structural studies of all three complexes confirmed that the ligands are bound in a bidentate mode via Pt–N(pyridyl) bonds forming a rare 8-membered ring. The intense fluorescence displayed by the ligands is quenched upon coordination to Pt. According to time dependent density functional theory (TDDFT) calculations, the key excitations of N(SO2(2-nap))dpa and [PtCl2(N(SO2(1-nap))dpa)] involve the 2-nap-ligand-centered π → π* excitations. While all six compounds have shown antiproliferative activity against human breast cancer cells (MCF-7), the N(SO2pip)dpa and N(SO2(2-nap))dpa ligands and [PtCl2((NSO2pip)dpa)] complex have shown significantly high cytotoxicity, directing them to be further investigated as potential anti-cancer drug leads. Three new Pt complexes, [PtCl2(N(SO2(2-nap))dpa)], [PtCl2(N(SO2(1-nap))dpa)] and [PtCl2(N(SO2pip)dpa)], containing a rare 8-membered ring were synthesized in good yield and high purity by utilizing ligands which contain a dipicolylamine moiety.![]()
Collapse
Affiliation(s)
- Nadini Thushara
- Department of Chemistry, University of Sri Jayewardenepura Sri Lanka
| | - Taniya Darshani
- Department of Chemistry, University of Sri Jayewardenepura Sri Lanka
| | - Sameera R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo Sri Lanka
| | - Inoka C Perera
- Department of Zoology and Environment Sciences, University of Colombo Sri Lanka
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University Baton Rouge LA USA
| | - W M C Sameera
- Institute of Low Temperature Science, Hokkaido University N19-W8, Kita-ku Sapporo Hokkaido 060-0819 Japan
| | - Theshini Perera
- Department of Chemistry, University of Sri Jayewardenepura Sri Lanka
| |
Collapse
|