1
|
Janković N, Bogdanović GA, Gligorijević N, Milović L, Međedović M, Matić J, Kosanić M, Vraneš M, Simović AR. Novel organoruthenium complexes containing β-Diketonates: Synthesis, characterization, DNA/HSA interactions, and the impact of biocompatible ionic liquids on biological activities. J Inorg Biochem 2025; 270:112941. [PMID: 40339269 DOI: 10.1016/j.jinorgbio.2025.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
In order to discover new dual-active agents, novel ruthenium (η6-p-cymene) complexes of the general formula [(η6-p-cym)Ru(OO)Cl] with O,O-diketo ester ligands ethyl 2-hydroxy-4-aryl-4-oxobut-2-enoate (1-3), were synthesized. The complexes 1-3 were characterized by spectral techniques (UV-Vis, IR, 1H and 13C NMR, and ESI-HRMS), elemental analysis, and X-ray crystallography. Based on in vitro DNA/HSA experiments, complex 1 exhibited the highest DNA/HSA-activity, suggesting that the presence of an alkene chain contributes to increased activity. The cytotoxic activity of 1-3 was evaluated in a panel of human cancer cell lines (A549, MDA-MB-231, LS-174, HeLa), and in one normal cell line (MRC-5), both in the absence and presence of biocompatible ionic liquids (BIO-ILs) such as cholinium glycinate (Cho-Gly), cholinium β-alaninate (Cho-Ala), and cholinium glutamate (Cho-Glu). Complex 1 exhibited the highest cytotoxicity and demonstrated selectivity toward HeLa cells. Additionally, its cytotoxicity was enhanced when combined with the BIO-ILs Cho-Gly and Cho-Ala. This study suggests that ionic liquids can influence the efficacy and selectivity of cancer treatments, highlighting the potential for enhancing therapeutic outcomes. However, it also emphasizes the need for a deeper understanding of BIO-IL interactions with cellular processes. Furthermore, compound 1 displayed strong antimicrobial activity against Staphylococcus aureus and Escherichia coli (MIC = 0.078 mg/mL). Among the assessed species, Candida albicans showed the highest sensitivity to antifungal activity. These results suggest that investigated compounds may have potential for further development as clinical candidates, pending additional studies.
Collapse
Affiliation(s)
- Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran A Bogdanović
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Department of experimental oncology, Pasterova 14, 11000 Belgrade, Serbia
| | - Lazar Milović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Milica Međedović
- University of Kragujevac, Faculty of Science, Department of chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jovana Matić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marijana Kosanić
- University of Kragujevac, Faculty of Science, Department of biology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ana Rilak Simović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| |
Collapse
|
2
|
Ouyang R, Wang S, Feng K, Liu C, Silva DZ, Chen Y, Zhao Y, Liu B, Miao Y, Zhou S. Potent saccharinate-containing palladium(II) complexes for sensitization to cancer therapy. J Inorg Biochem 2023; 244:112205. [PMID: 37028114 DOI: 10.1016/j.jinorgbio.2023.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Palladium(II) (PdII) complexes are among the most promising anticancer compounds. Both 2`-benzoylpyridine thiosemicarbazone (BpT) and saccharinate (Sac) are efficient metal chelators with potent anticancer activity. To explore a more effective new anticancer drug, we synthesized a series of Sac and BpT-containing PdII complexes coordinated with thiosemicarbazone (TSC)-derived ligands, and characterized them through nuclear magnetic resonance (NMR), Fourier transformed infrared spectroscopy (FT-IR), elemental analysis, ultraviolet-visible spectroscopy (UV-Vis) and thermogravimetric analysis (TGA). Each target complex was composed of PdII, BpT, and one or two Sac molecules. Both the in vitro and in vivo anti-growth effects of those ligands and the obtained PdII complexes were investigated in the human lung adenocarcinoma cell lines A549 and Spc-A1. The coordination of PdII with the TSC-derivatives and Sac resulted in clearly greater anticancer activity than single ligands. These compounds were demonstrated to be safe for 293 T normal human kidney epithelial cells. The introduction of Sac into the TSC-derived PdII complex significantly enhanced anti-growth effects, and induced apoptosis of human lung cancer cells in vitro and in vivo in a dose dependent manner. Moreover, the PdII complex containing two Sac molecules showed the most promising therapeutic effects, thereby confirming that Sac increases the cancer therapeutic efficacy of PdII complexes and providing a new strategy for exploring anticancer drugs for potential clinical treatment.
Collapse
|
3
|
Nie Y, Dai Z, Fozia, Zhao G, Jiang J, Xu X, Ying M, Wang Y, Hu Z, Xu H. Comparative Studies on DNA-Binding Mechanisms between Enantiomers of a Polypyridyl Ruthenium(II) Complex. J Phys Chem B 2022; 126:4787-4798. [PMID: 35731588 DOI: 10.1021/acs.jpcb.2c02104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pair of ruthenium(II) complex enantiomers, Δ- and Λ-[Ru(bpy)2MBIP]2+ (bpy = 2,2'-bipyridine, MBIP = 2-(3-bromophenyl)imidazo[5,6-f]phenanthroline), were designed, synthesized, and characterized. Comparative studies between the enantiomers on their binding behaviors to calf thymus DNA (CT-DNA) were conducted using UV-visible, fluorescence, and circular dichroism spectroscopies, viscosity measurements, isothermal titration calorimetry, a photocleavage experiment, and molecular simulation. The experimental results indicated that both the enantiomers spontaneously bound to CT-DNA through intercalation stabilized by the van der Waals force or the hydrogen bond and driven by enthalpy and that Δ-[Ru(bpy)2MBIP]2+ intercalated into DNA more deeply than Λ-[Ru(bpy)2MBIP]2+ did and exhibited a better DNA photocleavage ability. Molecular simulation further indicated that Δ-[Ru(bpy)2MBIP]2+ more preferentially intercalated between the base pairs of CT-DNA to the major groove, and Λ-[Ru(bpy)2MBIP]2+ more favorably intercalated to the minor groove. These research findings should be very helpful to the understanding of the stereoselectivity mechanism of DNA-bindings of metal complexes, and be useful for the design of novel metal-complex-based antitumor drugs with higher efficacy and lower toxicity.
Collapse
Affiliation(s)
- Yanhong Nie
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongming Dai
- Shenzhen University General Hospital, Shenzhen 518060, P. R. China
| | - Fozia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Guangyao Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jianrong Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xu Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, P. R. China
| | - Hong Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
4
|
Fouad R, Shebl M, Saif M, Gamal S. Novel copper nano-complex based on tetraazamacrocyclic backbone: Template synthesis, structural elucidation, cytotoxic, DNA binding and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
de Almeida PSVB, de Arruda HJ, Sousa GLS, Ribeiro FV, de Azevedo-França JA, Ferreira LA, Guedes GP, Silva H, Kummerle AE, Neves AP. Cytotoxicity evaluation and DNA interaction of Ru II-bipy complexes containing coumarin-based ligands. Dalton Trans 2021; 50:14908-14919. [PMID: 34609400 DOI: 10.1039/d1dt01567b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although there are various treatment options for cancer, this disease still has caused an increasing number of deaths, demanding more efficient, selective and less harmful drugs. Several classes of ruthenium compounds have been investigated as metallodrugs for cancer, mainly after the entry of imidazolH [trans-RuCl4-(DMSO-S)(imidazole)] (NAMI-A) and indazolH [trans-RuCl4-(Indazol)2] (KP1019) in clinical trials. In this sense, RuII complexes with general formula [Ru(L1-3)(bipy)2]PF6 (1-3) (L1 = ethyl 3-(6-methyl-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L2 = ethyl 3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L3 = ethyl 3-(8-methoxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate and bipy = bipyridine) have been synthesized. The crystal structure of 2 revealed that the RuII atom lies on a distorted octahedral geometry with the deprotonated ligand (L2-) coordinated through β-ketoester group oxygen atoms. In vitro cytotoxic activity of the compounds was evaluated against 4T1 (murine mammary carcinoma) and B16-F10 (murine metastatic melanoma) tumor cells, and the non-tumor cell line BHK-21 (baby hamster kidney). Coordination with RuII resulted in expressive enhancement of cytotoxic activity. The precursors were inactive below 100 μM and the final RuII complexes (1-3) showed IC50 ranging from 2.0 to 12.8 μM; 2 being the most potent compound. DNA interaction studies revealed a greater capacity of the complexes to interact with DNA than the ligands, where, 2 exhibited the highest Kb constant of 2.2 × 104 M-1. Fluorescence investigation demonstrated that 1-3 are capable of quenching the fluorescence emission of the EtdBr-DNA complex up to 40%. Molecular docking showed that the interaction of 1-3 between the DNA base pairs from the coumarin portion was with scores of 67.28, 68.62 and 64.88, respectively, and 75.45 for ellipticine, suggesting an intercalative mode of binding. Our findings show that the RuII complexes are eligible for continuing to be investigated as potential antitumor compounds.
Collapse
Affiliation(s)
- Patrícia S V B de Almeida
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Henrique Jefferson de Arruda
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Gleyton Leonel S Sousa
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Felipe Vitório Ribeiro
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | | | - Larissa A Ferreira
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Heveline Silva
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, MG, Brazil
| | - Arthur E Kummerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Amanda P Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| |
Collapse
|