1
|
Hazer MSA, Malola S, Häkkinen H. Metal-ligand bond in group-11 complexes and nanoclusters. Phys Chem Chem Phys 2024; 26:21954-21964. [PMID: 39010760 DOI: 10.1039/d4cp00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Density functional theory is used to study geometric, energetic, and electronic properties of metal-ligand bonds in a series of group-11 metal complexes and ligand-protected metal clusters. We study complexes as the forms of M-L (L = SCH3, SC8H9, PPh3, NHCMe, NHCEt, NHCiPr, NHCBn, CCMe, CCPh) and L1-M-L2 (L1 = NHCBn, PPh3, and L2 = CCPh). Furthermore, we study clusters denoted as [M13L6Br6]- (L = PPh3, NHCMe, NHCEt, NHCiPr, NHCBn). The systems were studied at the standard GGA level using the PBE functional and including vdW corrections via BEEF-vdW. Generally, Au has the highest binding energies, followed by Cu and Ag. PBE and BEEF-vdW functionals show the order Ag-L > Au-L > Cu-L for bond lengths in both M-L complexes and metal clusters. In clusters, the smallest side group (CH3) in NHCs leads to the largest binding energy whereas no significant variations are seen concerning different side groups of NHC in M-L complexes. By analyzing the projected density of states and molecular orbitals in complexes and clusters, the M-thiolate bonds were shown to have σ and π bond characteristics whereas phosphines and carbenes were creating σ bonds to the transition metals. Interestingly, this analysis revealed divergent behavior for M-alkynyl complexes: while the CCMe group displayed both σ and π bonding features, the CCPh ligand was found to possess only σ bond properties in direct head-to-head binding configuration. Moreover, synergetic effects increase the average binding strength to the metal atom significantly in complexes of two different ligands and underline the potential of adding Cu to synthesize structurally richer cluster systems. This study helps in understanding the effects of different ligands on the stability of M-L complexes and clusters and suggests that PPh3 and NHCs-protected Cu clusters are most stable after Au clusters.
Collapse
Affiliation(s)
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
2
|
Muñoz-Castro A, Dias HVR. Bonding and 13 C-NMR properties of coinage metal tris(ethylene) and tris(norbornene) complexes: Evaluation of the role of relativistic effects from DFT calculations. J Comput Chem 2022; 43:1848-1855. [PMID: 36073752 DOI: 10.1002/jcc.26987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
The π-complexes of cationic coinage metal ions (Cu(I), Ag(I), Au(I)) provide useful experimental support for understanding fundamental characteristics of bonding and 13 C-NMR patterns of the group 11 triad. Here, we account for the role of relativistic effects on olefin-coinage metal ion interaction for cationic, homoleptic tris-ethylene, and tris-norbornene complexes, [M(η2 -C2 H4 )3 ]+ and [M(η2 -C7 H10 )3 ]+ (M = Cu, Ag, Au), as representative case of studies. The M-(CC) bond strength in the cationic, tris-ethylene complexes is affected sizably for Au and to a lesser extent for Ag and Cu (48.6%, 16.7%, and 4.3%, respectively), owing to the influence on the different stabilizing terms accounting for the interaction energy in the formation of coinage metal cation-π complexes. The bonding elements provided by olefin → M σ-donation and olefin ← M π-backbonding are consequently affected, leading to a lesser covalent interaction going down in the triad if the relativistic effects are ignored. Analysis of the 13 C-NMR tensors provides further understanding of the observed experimental values, where the degree of backbonding charge donation to π2 *-olefin orbital is the main influence on the observed high-field shifts in comparison to the free olefin. This donation is larger for ethylene complexes and lower for norbornene counterparts. However, the bonding energy in the later complexes is slightly stabilized given by the enhancement in the electrostatic character of the interaction. Thus, the theoretical evaluation of metal-alkene bonds, and other metal-bonding situations, benefits from the incorporation of relativistic effects even in lighter counterparts, which have an increasing role going down in the group.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
3
|
Pedrazzani R, Pintus A, De Ventura R, Marchini M, Ceroni P, Silva López C, Monari M, Bandini M. Boosting Gold(I) Catalysis via Weak Interactions: New Fine-Tunable Impy Ligands. ACS ORGANIC & INORGANIC AU 2022; 2:229-235. [PMID: 36855471 PMCID: PMC9954282 DOI: 10.1021/acsorginorgau.1c00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of modular ImPy-carbene-Au(I) complexes are synthesized and fully characterized both in the solid state and in solution. The presence of oligoaryl units (phenyl and thienyl rings) at the C5-position of the ImPy core (in close proximity to the gold center) imprints on the organometallic species fine-tunable and predictable catalytic properties. A marked accelerating effect was recorded in several [Au(I)]-catalyzed electrophilic activations of unsaturated hydrocarbons when a CF3-containing aromatic ring was accommodated at the ImPy core.
Collapse
Affiliation(s)
- Riccardo Pedrazzani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Angela Pintus
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Roberta De Ventura
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Marianna Marchini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Paola Ceroni
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidad
de Vigo, 36310 Vigo, Spain
| | - Magda Monari
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy,
| | - Marco Bandini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Via Selmi 2, 40126 Bologna, Italy,Center
for Chemical Catalysis—C3, Via Selmi 2, 40126 Bologna, Italy,
| |
Collapse
|
4
|
Guajardo Maturana R, Ortolan AO, Rodríguez-Kessler PL, Caramori GF, Parreira RLT, Muñoz-Castro A. Nature of hydride and halide encapsulation in Ag 8 cages: insights from the structure and interaction energy of [Ag 8(X){S 2P(O iPr) 2} 6] + (X = H -, F -, Cl -, Br -, I -) from relativistic DFT calculations. Phys Chem Chem Phys 2021; 24:452-458. [PMID: 34897316 DOI: 10.1039/d1cp04249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the different contributing terms to an efficient anion encapsulation is a relevant issue for further understanding of the underlying factors governing the formation of endohedral species. Herein, we explore the favorable encapsulation of hydride and halide anions in the [Ag8(X){S2P(OPr)2}6]+ (X- = H, 1, F, 2, Cl, 3, Br, 4, and, I, 5) series on the basis of relativistic DFT-D level of theory. The resulting Ag8-X interaction is sizable, which decreases along the series: -232.2 (1) > -192.1 (2) > -165.5 (3) > -158.0 (4) > -144.2 kcal mol-1 (5), denoting a more favorable inclusion of hydride and fluoride anions within the silver cage. Such interaction is mainly stabilized by the high contribution from electrostatic type interactions (80.9 av%), with a lesser contribution from charge-transfer (17.4 av%) and London type interactions (1.7 av%). Moreover, the ionic character of the electrostatic contributions decreases from 90.7% for hydride to 68.6% for the iodide counterpart, in line with the decrease in hardness according to the Pearson's acid-base concept (HSAB) owing to the major role of higher electrostatic interaction terms related to the softer (Lewis) bases. Lastly, the [Ag8{S2P(OPr)2}6]2+ cluster is able to adapt its geometry in order to maximize the interaction towards respective monoatomic anion, exhibiting structural flexibility. Such insights shed light on the physical reasoning necessary for a better understanding of the different stabilizing and destabilizing contributions related to metal-based cavities towards favorable incorporation of different monoatomic anions.
Collapse
Affiliation(s)
- Raul Guajardo Maturana
- Universidad SEK, Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinaren Ciencias Biomédicas SEK (I3CBSEK) Chile, Fernando Manterola 0789, Providencia, Santiago, Chile
| | - Alexandre O Ortolan
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC, 88040-900, Brazil.
| | - Peter L Rodríguez-Kessler
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC, 88040-900, Brazil.
| | - Renato L T Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600, Brazil.
| | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.
| |
Collapse
|
5
|
Rodríguez-Kessler PL, Rojas-Poblete M, Muñoz-Castro A. Evaluation of ultrasmall coinage metal M 13(dppe) 6 M = Cu, Ag, and Au clusters. Bonding, structural and optical properties from relativistic DFT calculations. Phys Chem Chem Phys 2021; 23:18035-18043. [PMID: 34386809 DOI: 10.1039/d1cp02451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasmall ligand-protected clusters are prototypical species for evaluating the variation at the bottom of the nanoscale range. Here we explored the ultrasmall gold-phosphine M13(dppe)6 cluster, as a prototypical framework to gain insights into the fundamental similarities and differences between Au, Ag, and Cu, in the 1-3 nm size range, via relativistic DFT calculations. Different charge states involving 8- and 10-cluster electron (ce) species with a 1S21P6 and 1S21P61D2 configuration, leading to structural modification in the Au species between Au13(dppm)65+ and Au13(dppm)63+, respectively. Furthermore, this structural distortion of the M13 core is found to occur to a lower degree for the calculated Ag and Cu counterparts. Interestingly, optical properties exhibit similar main patterns along with the series, inducing a blue-shift for silver and copper, in comparison to the gold parent cluster. For 10-ce species, the main features of 8-ce are retained with the appearance of several weak transitions in the range. The ligand-core interaction is enhanced for gold counterparts and decreased for lighter counterparts resulting in the Au > Cu > Ag trend for the interaction stabilization. Hence, the Ag and Cu counterparts of the Au13(dppm)6 cluster appear as useful alternatives, which can be further explored towards different cluster alternatives for building blocks for nanostructured materials.
Collapse
Affiliation(s)
- Peter L Rodríguez-Kessler
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| | | | | |
Collapse
|