1
|
Vargas BB, Arman HD, Adrian RA. (2,2'-Bi-pyridine-κ 2N, N')(4,4'-dimeth-oxy-2,2'-bipyridine-κ 2N, N')palladium(II) bis-(tri-fluoro-meth-anesulfonate). IUCRDATA 2024; 9:x240109. [PMID: 38455110 PMCID: PMC10915546 DOI: 10.1107/s2414314624001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
In the title complex salt, [Pd(C10H8N2)(C12H12N2O2)](CF3SO3)2, the palladium(II) atom is fourfold coordinated by two chelating ligands, 2,2'-bi-pyridine and 4,4'-dimeth-oxy-2,2'-bi-pyridine, in a distorted square-planar environment. In the crystal, weak π-π stacking inter-actions between the 2,2'-bi-pyridine rings [centroid-to-centroid distances = 3.8984 (19) Å] and between the 4,4'-dimeth-oxy-2,2'-bi-pyridine rings [centroid-to-centroid distances = 3.747 (18) Å] contribute to the alignment of the complex cations in columns parallel to the b-axis direction.
Collapse
Affiliation(s)
- Brittney B. Vargas
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Rafael A. Adrian
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA
| |
Collapse
|
2
|
Hallen L, Horan AM, Twamley B, McGarrigle EM, Draper SM. Accessing unsymmetrical Ru(II) bipyridine complexes: a versatile synthetic mechanism for fine tuning photophysical properties. Chem Commun (Camb) 2023; 59:330-333. [PMID: 36511718 DOI: 10.1039/d2cc04910d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three novel unsymmetrical Ru(II) bipyridine complexes were generated via a convenient, modular, convergent synthetic route. An investigation of their photophysical properties revealed solvent-dependent excited state behaviour including altered absorption and emission wavelengths, emission lifetimes and quantum yields of phosphorescence.
Collapse
Affiliation(s)
- Lukas Hallen
- School of Chemistry, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
| | - Alexandra M Horan
- SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
| | - Eoghan M McGarrigle
- SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland. .,AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Oelschlegel M, Hua SA, Schmid L, Marquetand P, Bäck A, Borter JH, Lücken J, Dechert S, Wenger OS, Siewert I, Schwarzer D, González L, Meyer F. Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties. Inorg Chem 2022; 61:13944-13955. [PMID: 36001121 DOI: 10.1021/acs.inorgchem.2c01930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular systems combining light harvesting and charge storage are receiving great attention in the context of, for example, artificial photosynthesis and solar fuel generation. As part of ongoing efforts to develop new concepts for photoinduced proton-coupled electron transfer (PCET) reactivities, we report a cyclometallated iridium(III) complex [Ir(ppy)2(S-Sbpy)](PF6) ([1]PF6) equipped with our previously developed sulfurated bipyridine ligand S-Sbpy. A new one-step synthetic protocol for S-Sbpy is developed, starting from commercially available 2,2'-bipyridine, which significantly facilitates the use of this ligand. [1]+ features a two-electron reduction with potential inversion (|E1| > |E2|) at moderate potentials (E1 = -1.12, E2 = -1.11 V versus. Fc+/0 at 253 K), leading to a dithiolate species [1]-. Protonation with weak acids allows for determination of pKa = 23.5 in MeCN for the S-H···S- unit of [1H]. The driving forces for both the H atom and the hydride transfer are calculated to be ∼60 kcal mol-1 and verified experimentally by reaction with a suitable H atom and a hydride acceptor, demonstrating the ability of [1]+ to serve as a versatile PCET reagent, albeit with limited thermal stability. In MeCN solution, an orange emission for [1]PF6 from a triplet-excited state was found. Density functional calculations and ultrafast absorption spectroscopy are used to give insight into the excited-state dynamics of the complex and suggest a significantly stretched S-S bond for the lowest triplet-state T1. The structural responsiveness of the disulfide unit is proposed to open an effective relaxation channel toward the ground state, explaining the unexpectedly short lifetime of [1]+. These insights as well as the quantitative ground-state thermochemistry data provide valuable information for the use of S-Sbpy-functionalized complexes and their disulfide-/dithiol-directed PCET reactivity.
Collapse
Affiliation(s)
- Manuel Oelschlegel
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Shao-An Hua
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Lucius Schmid
- Department of Chemistry, University of Basel, CH-4056Basel, Switzerland
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Anna Bäck
- Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Jan-Hendrik Borter
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Jana Lücken
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, CH-4056Basel, Switzerland
| | - Inke Siewert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Gupta D, Lakraychi AE, Boruah BD, De Kreijger S, Troian‐Gautier L, Elias B, De Volder M, Vlad A. Visible‐Light Augmented Lithium Storage Capacity in a Ruthenium(II) Photosensitizer Conjugated with a Dione‐Catechol Redox Couple. Chemistry 2022; 28:e202201220. [DOI: 10.1002/chem.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Deepak Gupta
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Alae E. Lakraychi
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Buddha D. Boruah
- Department of Engineering University of Cambridge Cambridge CB3 0FS United Kingdom
- Institute for Materials Discovery University College London London WC1E 7JE United Kingdom
| | - Simon De Kreijger
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Benjamin Elias
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Michael De Volder
- Department of Engineering University of Cambridge Cambridge CB3 0FS United Kingdom
| | - Alexandru Vlad
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|