1
|
Haider A, Haider S, Rao Kummara M, Kamal T, Alghyamah AAA, Jan Iftikhar F, Bano B, Khan N, Amjid Afridi M, Soo Han S, Alrahlah A, Khan R. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Chen K, Fan X, Tang K, Wan G, He X, Li X, Chen Q, Shen M, Lv Y, Wang F. Morphology-Controllable Collagen/Poly(2-hydroxyethyl methacrylate) Porous Hydrogel with a Paraffin Microsphere as a Template. ACS APPLIED BIO MATERIALS 2018; 1:1311-1318. [PMID: 34996235 DOI: 10.1021/acsabm.8b00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, a porous poly(2-hydroxyethyl methacrylate) (PHEMA) matrix was fabricated by a paraffin template method, which was used as a substrate to adhere collagen fibers to form an interconnective porous collagen/PHEMA (Col-PHEMA) composite hydrogel. A microscope and scanning electron microscope (SEM) were employed to characterize the morphology of paraffin microspheres and Col-PHEMA composite hydrogels. The paraffin microspheres with the diameter in the range from 100 to 200 μm were collected by a preset sieve. Then, the interface of uniform paraffin microspheres were thermally bonded to form a contacted template, and the derived Col-PHEMA composite hydrogels had an interconnective porous microstructure. Fourier transform infrared spectroscopy (FTIR) indicated that new hydrogen bonds were formed between collagen fibers and the PHEMA hydrogel. Besides, the Col-PHEMA composite hydrogels revealed a high hydrophilicity, good mechanical properties, and good water uptake capacity. The porous Col-PHEMA composite hydrogels showed a good biocompatibility, and the collagen layer may promote the proliferation of fibroblast cells. The Col-PHEMA composite hydrogel is expected to find an application in corneal repairing.
Collapse
Affiliation(s)
- Keke Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xialian Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guangming Wan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xichan He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiumin Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qiyuan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Min Shen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwen Lv
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Hassani Besheli N, Damoogh S, Zafar B, Mottaghitalab F, Motasadizadeh H, Rezaei F, Shokrgozar MA, Farokhi M. Preparation of a Codelivery System Based on Vancomycin/Silk Scaffold Containing Silk Nanoparticle Loaded VEGF. ACS Biomater Sci Eng 2018; 4:2836-2846. [DOI: 10.1021/acsbiomaterials.8b00149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Negar Hassani Besheli
- School of Chemical Engineering, Collage of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417466191, Iran
| | - Sheyda Damoogh
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| | - Bahareh Zafar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417613151, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875/4413, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran 1316943551, Iran
| |
Collapse
|
4
|
Han W, Xin Y, Hasegawa U, Uyama H. Enzyme immobilization on polymethacrylate-based monolith fabricated via thermally induced phase separation. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Shim JB, Ankeny RF, Kim H, Nerem RM, Khang G. A study of a three-dimensional PLGA sponge containing natural polymers co-cultured with endothelial and mesenchymal stem cells as a tissue engineering scaffold. Biomed Mater 2014; 9:045015. [PMID: 25065725 DOI: 10.1088/1748-6041/9/4/045015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interaction between vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in a complex hemodynamic and mechanical environment plays an important role in the control of blood vessel growth and function. Despite the importance of VSMCs, substitutes are needed for vascular therapies. A potential VSMC substitute is human adult bone marrow derived mesenchymal stem cells (hMSCs). In this study, the effect of poly(lactic-co-glycolic acid) (PLGA) scaffolds containing three natural polymers (demineralized bone particles, silk, and small intestine submucosa) on the phenotype of MSCs and SMCs cultured with or without ECs was investigated. The study objective was to create a media equivalent for a tissue engineered blood vessel using PLGA, natural polymers, and MSCs co-cultured with ECs. The PLGA containing the natural polymers silk and SIS showed increased proliferation and cell adhesion. The presence of silk and DBP promoted a MSC phenotype change into a SMC-like phenotype at the mRNA level; however these differences at the protein level were not seen. Additionally, PLGA containing SIS did not induce SMC gene or protein upregulation. Finally, the effect of ECs in combination with the natural polymers was tested. When co-cultured with ECs, the mRNA of SMC specific markers in MSCs and SMCs were increased when compared to SMCs or MSCs alone. However, MSCs, when co-cultured with ECs on PLGA containing silk, exhibited significantly increased α-SMA and calponin expression when compared to PLGA only scaffolds. These results indicate that the natural polymer silk in combination with the co-culture of endothelial cells was most effective at increasing cell viability and inducing a SMC-like phenotype at the mRNA and protein level in MSCs.
Collapse
Affiliation(s)
- Jung Bo Shim
- Department of BIN Fusion Technology & Polymer Fusion Research Center, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | | | |
Collapse
|
6
|
Kim HY, Kim HN, Lee SJ, Song JE, Kwon SY, Chung JW, Lee D, Khang G. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regenerationin vivo. J Tissue Eng Regen Med 2014; 11:44-57. [DOI: 10.1002/term.1856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 07/29/2013] [Accepted: 11/10/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Hye Yun Kim
- Department of BIN Fusion Technology, Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Ha Neul Kim
- Department of BIN Fusion Technology, Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - So Jin Lee
- Department of BIN Fusion Technology, Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Jeong Eun Song
- Department of BIN Fusion Technology, Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Soon Yong Kwon
- Department of Orthopaedic Surgery, Yeouido St Mary's Hospital; Catholic University of Korea; Seoul Korea
| | - Jin Wha Chung
- Department of Orthopaedic Surgery, Yeouido St Mary's Hospital; Catholic University of Korea; Seoul Korea
| | - Dongwon Lee
- Department of BIN Fusion Technology, Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| | - Gilson Khang
- Department of BIN Fusion Technology, Polymer Fusion Research Centre; Chonbuk National University; Jeonju Korea
| |
Collapse
|
7
|
Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 2014; 3:835-51. [PMID: 17280547 DOI: 10.1586/17434440.3.6.835] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polymeric scaffolds for tissue engineering can be prepared with a multitude of different techniques. Many diverse approaches have recently been under development. The adaptation of conventional preparation methods, such as electrospinning, induced phase separation of polymer solutions or porogen leaching, which were developed originally for other research areas, are described. In addition, the utilization of novel fabrication techniques, such as rapid prototyping or solid free-form procedures, with their many different methods to generate or to embody scaffold structures or the usage of self-assembly systems that mimic the properties of the extracellular matrix are also described. These methods are reviewed and evaluated with specific regard to their utility in the area of tissue engineering.
Collapse
Affiliation(s)
- Thomas Weigel
- Department of Polymer Technology, Institute of Polymer Research, GKSS Research Center Geesthacht, Kantstr 55, D-14513 Teltow, Germany.
| | | | | |
Collapse
|
8
|
Thadavirul N, Pavasant P, Supaphol P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.35010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Napapaphat Thadavirul
- The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology (PETROMAT); Chulalongkorn University; Bangkok 10330 Thailand
| | - Prasit Pavasant
- Department of Anatomy; Faculty of Dentistry; Chulalongkorn University; Bangkok 10330 Thailand
| | - Pitt Supaphol
- The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology (PETROMAT); Chulalongkorn University; Bangkok 10330 Thailand
| |
Collapse
|
9
|
Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. Int J Pharm 2013; 454:216-25. [DOI: 10.1016/j.ijpharm.2013.06.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/26/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022]
|
10
|
Cheng L, Li Y, Zuo Y, Li J, Wang H. Nano-hydroxyapatite/polyamide 6 scaffold as potential tissue engineered bone substitutes. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/143307508x362837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:485-502. [PMID: 23672709 DOI: 10.1089/ten.teb.2012.0437] [Citation(s) in RCA: 1540] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues or organs. These scaffolds serve to mimic the actual in vivo microenvironment where cells interact and behave according to the mechanical cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are vital in determining cellular response and fate. These 3D scaffolds are generally highly porous with interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. This review focuses on the various fabrication techniques (e.g., conventional and rapid prototyping methods) that have been employed to fabricate 3D scaffolds of different pore sizes and porosity. The different pore size and porosity measurement methods will also be discussed. Scaffolds with graded porosity have also been studied for their ability to better represent the actual in vivo situation where cells are exposed to layers of different tissues with varying properties. In addition, the ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffolds will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix. Overall, the limitations of current scaffold fabrication approaches for tissue engineering applications and some novel and promising alternatives will be highlighted.
Collapse
Affiliation(s)
- Qiu Li Loh
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University , Singapore, Singapore
| | | |
Collapse
|
12
|
Saez-Martinez V, Atorrasagasti G, Olalde B, Madarieta I, Morin F, Garagorri N. Fabrication and Characterization of Macroporous Poly(Ethylene Glycol) Hydrogels Generated by Several Types of Porogens. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.734353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Kim HE, Kim HN, Yu H, Song JE, Jeoung SY, Kim Y, Lee D, Khang G. Effect of demineralized bone particles (DBP) on cell growth and ECM secretion in PLGA/DBP hybrid scaffold for cartilage tissue engineering. Macromol Res 2012. [DOI: 10.1007/s13233-012-0148-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Bao TQ, Franco RA, Lee BT. Preparation and characterization of a novel 3D scaffold from poly(ɛ-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
de Moraes Machado JL, Giehl IC, Nardi NB, dos Santos LA. Evaluation of Scaffolds based on α-Tricalcium Phosphate Cements for Tissue Engineering Applications. IEEE Trans Biomed Eng 2011; 58:1814-9. [DOI: 10.1109/tbme.2011.2117425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Baker SC, Rohman G, Hinley J, Stahlschmidt J, Cameron NR, Southgate J. Cellular integration and vascularisation promoted by a resorbable, particulate-leached, cross-linked poly(ε-caprolactone) scaffold. Macromol Biosci 2011; 11:618-27. [PMID: 21344647 DOI: 10.1002/mabi.201000415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/30/2010] [Indexed: 11/09/2022]
Abstract
Flexible, strong scaffolds were created by crosslinking PCL with 1,6-hexamethylenediisocyanate, using paraffin beads as a porogen. Particulate leaching generated homogeneous scaffolds with interconnected spherical pores of 5-200 µm. Subcutaneous implantation in rats for 3 months resulted in minimal scaffold resorption and a non-inflammatory regenerative host response, with complete infiltration by alternatively-activated CD68(+) macrophages. In addition, scaffolds were populated extensively along microfractures by a stromal matrix, which was highly vascularised and contained a subset of stromal cells that expressed the anti-inflammatory CD163 antigen. Such microfractures may be an important physical feature for directing stromal integration and vascularisation events.
Collapse
Affiliation(s)
- Simon C Baker
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | | | | | | | | | | |
Collapse
|
17
|
Preparation of highly interconnected porous hydroxyapatite scaffolds by chitin gel-casting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Pathak A, Kumar S. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol (Camb) 2011; 3:267-78. [DOI: 10.1039/c0ib00095g] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Garkhal K, Mittal A, Verma S, Kumar N. P-15 functionalized porous microspheres as biomimetic habitats for bone tissue engineering applications. POLYM ADVAN TECHNOL 2010. [DOI: 10.1002/pat.1841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res A 2010; 94:241-51. [PMID: 20166220 DOI: 10.1002/jbm.a.32657] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycaprolactone (PCL) is a synthetic biodegradable polymer that has been approved for use as bone graft substitutes. In this study, PCL scaffolds incorporating hydroxyapatite (HAp) particles were fabricated by combined solvent casting and particulate leaching techniques. The average pore dimension was in the range of about 480-500 microm. The porosity, water absorption, and compressive modulus of the scaffold were evaluated. The responses of primary bone cells cultured on the PCL and PCL/HAp scaffolds were examined both in vitro and invivo. In comparison with the cells grown on the PCL scaffold, those cultured on the PCL/HAp counterpart positively expressed the markers of osteogenic differentiation. Cells increased the mRNA expressions of type I collagen and osteocalcin on day 10 and demonstrated a significant increase in calcium deposition. In coherence with the in vitro appearance, histomorphometric analysis in a mouse calvarial model showed a significantly greater amount of new bone formation. The results demonstrated that the prepared PCL/HAp scaffold could be a good candidate as synthetic substitute for bone tissue engineering. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
Collapse
|
21
|
Parkinson LG, Giles NL, Adcroft KF, Fear MW, Wood FM, Poinern GE. The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair. Tissue Eng Part A 2010; 15:3753-63. [PMID: 19527180 DOI: 10.1089/ten.tea.2008.0594] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells respond to changes in the environment by altering their phenotype. The ability to influence cell behavior by modifying their environment provides an opportunity for therapeutic application, for example, to promote faster wound healing in response to skin injury. Here, we have modified the preparation of an aluminium oxide template to generate large uniform membranes with differing nano-pore sizes. Epidermal cells (keratinocytes) and dermal cells (fibroblasts) readily adhere to these nanoporous membranes. The pore size appears to influence the rate of cell proliferation and migration, important aspects of cell behavior during wound healing. The suitability of the membrane to act as a dressing after a burn injury was assessed in vivo; application of the membrane demonstrated adherence and conformability to the skin surface of a pig, with no observed degradation or detrimental effect on the repair. Our results suggest that keratinocytes are sensitive to changes in topography at the nanoscale level and that this property may be exploited to improve wound repair after tissue injury.
Collapse
Affiliation(s)
- Leigh G Parkinson
- Department of Physics and Nanoscience, School of Engineering and Energy, Murdoch University, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Aboudzadeh N, Imani M, Shokrgozar MA, Khavandi A, Javadpour J, Shafieyan Y, Farokhi M. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A 2010; 94:137-45. [DOI: 10.1002/jbm.a.32673] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Wang Y, Liu L, Guo S. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2009.11.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Sabetrasekh R, Tiainen H, Lyngstadaas SP, Reseland J, Haugen H. A Novel Ultra-porous Titanium Dioxide Ceramic with Excellent Biocompatibility. J Biomater Appl 2010; 25:559-80. [DOI: 10.1177/0885328209354925] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study compares biocompatibility, cell growth and morphology, pore diameter distribution, and interconnectivity of a novel titanium dioxide (TiO2) bone graft substitute granules with three different commercially available bone graft granules Natix®, Straumann® BoneCeramic, and Bio-Oss®. Human primary mesenchymal stem cells were cultured on the bone graft substitutes and cell viability and proliferation were evaluated after 1 and 3 days. The microstructural properties of the bone graft substitutes were evaluated by scanning electron microscopy, micro-computed tomography analysis, and mechanical testing. The cell viability and proliferation, porosity, interconnectivity, open pore size, and surface area-to-volume ratio of TiO2 granules were significantly higher than commercial bone granules (Bio-Oss® and Straumann ® BoneCeramic).
Collapse
Affiliation(s)
- Roya Sabetrasekh
- Department for Biomaterials, Faculty for Dentistry, University of Oslo NO-0317 Oslo, Norway
| | - Hanna Tiainen
- Department for Biomaterials, Faculty for Dentistry, University of Oslo NO-0317 Oslo, Norway
| | - S. Petter Lyngstadaas
- Department for Biomaterials, Faculty for Dentistry, University of Oslo NO-0317 Oslo, Norway
| | - Janne Reseland
- Department for Biomaterials, Faculty for Dentistry, University of Oslo NO-0317 Oslo, Norway
| | - Håvard Haugen
- Department for Biomaterials, Faculty for Dentistry, University of Oslo NO-0317 Oslo, Norway,
| |
Collapse
|
25
|
Jack KS, Velayudhan S, Luckman P, Trau M, Grøndahl L, Cooper-White J. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Acta Biomater 2009; 5:2657-67. [PMID: 19375396 DOI: 10.1016/j.actbio.2009.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/05/2009] [Accepted: 03/17/2009] [Indexed: 11/18/2022]
Abstract
This study reports the fabrication and characterization of nano-sized hydroxyapatite (HA)/poly(hydroxyabutyrate-co-hydroxyvalerate) (PHBV) polymer composite scaffolds with high porosity and controlled pore architectures. These scaffolds were prepared using a modified thermally induced phase-separation technique. This investigation focuses on the effect of fabrication conditions on the overall pore architecture of the scaffolds and the dispersion of HA nanocrystals within the composite scaffolds. The morphologies, mechanical properties and in vitro bioactivity of the composite scaffolds were investigated. It was noted that the pore architectures could be manipulated by varying phase-separation parameters. The HA particles were dispersed in the pore walls of the scaffolds and were well bonded to the polymer. The introduction of HA greatly increased the stiffness and strength, and improved the in vitro bioactivity of the scaffolds. The results suggest these newly developed nano-HA/PHBV composite scaffolds may serve as an effective three-dimensional substrate in bone tissue engineering.
Collapse
Affiliation(s)
- Kevin S Jack
- Centre for Nanotechnology and Biomaterials (Level 4E), The University of Queensland, St. Lucia, Qld 4072, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules 2009; 10:2351-78. [DOI: 10.1021/bm900186s] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tim Desmet
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000, Belgium, and Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent Univeristy, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| | - Rino Morent
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000, Belgium, and Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent Univeristy, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000, Belgium, and Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent Univeristy, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| | - Christophe Leys
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000, Belgium, and Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent Univeristy, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| | - Etienne Schacht
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000, Belgium, and Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent Univeristy, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000, Belgium, and Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent Univeristy, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Perron JK, Naguib HE, Daka J, Chawla A. A parametric study on the processing parameters and properties of a porous poly(DL-lactide-co
-glycolide) acid 85/15 bioscaffolds. POLYM ENG SCI 2009. [DOI: 10.1002/pen.21443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Li J, Yuan X, He F, Mak AFT. Hybrid coating of hydroxyapatite and collagen within poly(D,L-lactic-co-glycolic acid) scaffold. J Biomed Mater Res B Appl Biomater 2008; 86:381-8. [PMID: 18161823 DOI: 10.1002/jbm.b.31031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To improve the cell-affinity of biodegradable polymer scaffold, coating hydroxyapatite (HA) or collagen on the surface of polymer materials seemed to be a strategy to combine both advantages of them. The objective of this study was to develop a novel method to introduce HA and collagen inside polymer scaffold uniformly. HA and collagen suspension was mixed with paraffin microspheres, and molded to form a composite sample. After the sample was dried, HA/collagen composite was left among and on the surface of paraffin microspheres. Poly(D,L-lactic-co-glycolic acid) (PLGA) (50/50) solution was cast into the inter-space of the paraffin microspheres and dried. Afterwards, the paraffin was dissolved and removed, HA/collagen was transferred to the surface and even inside of the pore wall of PLGA scaffolds. Collagen fibers and HA particles which were inlaid inside the PLGA pore wall could help to enhance the coating strength between HA/Col coating and the pore wall surface of the PLGA scaffold. The scaffolds with HA/Col coating were expected to exhibit desirable properties in bone tissue engineering.
Collapse
Affiliation(s)
- Jiashen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
29
|
Wicke–Kallenbach and Graham's diffusion cells: Limits of application for low surface area porous solids. Chem Eng Sci 2008. [DOI: 10.1016/j.ces.2008.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Lee SJ, Kim SY, Lee YM. Preparation of porous collagen/hyaluronic acid hybrid scaffolds for biomimetic functionalization through biochemical binding affinity. J Biomed Mater Res B Appl Biomater 2007; 82:506-18. [PMID: 17279566 DOI: 10.1002/jbm.b.30756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study demonstrated the feasibility of introducing an avidin-biotin system to three-dimensional and highly porous scaffolds for the purpose of designing scaffolds that have binding affinity with bioactive molecules for various biomimetic modifications. Porous hybrid scaffolds composed of collagen and hyaluronic acid (HA) were prepared by a novel overrun process. The overrun-processed scaffolds showed a uniform dual-pore structure because of the injection of gas bubbles and ice recrystallization during the fabrication process and had a higher porosity than scaffolds prepared by a conventional freeze-drying method. The mechanical strength and biodegradation kinetics were controlled by the method of preparation and the composition of collagen/HA. Collagen/HA scaffolds did not show any significant adverse effects on cell viability even after 10 days of incubation. The fibroblasts cultured in the overrun-processed scaffolds were widely distributed and had proliferated on the surfaces of the macropores in the scaffolds, whereas the cells that were seeded in the freeze-dried scaffolds had attached mainly on the dense surface of the scaffolds. As the collagen content in the scaffolds increased, the cellular ingrowth into the inner pores of the scaffolds decreased because of the high affinity between the collagen and the cells. Measurements obtained via confocal microscopy revealed that the porous collagen/HA scaffolds could be functionalized with the biotin by incorporating avidin. Therefore, the present biotinylation approach may allow the incorporation of various bioactive molecules (DNA, growth factors, drug, peptide, etc) into the three-dimensional porous scaffolds.
Collapse
Affiliation(s)
- Su Jin Lee
- School of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea
| | | | | |
Collapse
|
31
|
Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59:187-206. [PMID: 17540473 DOI: 10.1016/j.addr.2007.04.001] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 04/19/2007] [Indexed: 01/18/2023]
Abstract
Growing demand for tissues and organs for transplantation and the inability to meet this need using by autogeneic (from the host) or allogeneic (from the same species) sources has led to the rapid development of tissue engineering as an alternative. Tissue engineering aims to replace or facilitate the regrowth of damaged or diseased tissue by applying a combination of biomaterials, cells and bioactive molecules. This review focuses on synthetic polymers that have been used for tissue growth scaffold fabrication and their applications in both cell and extracellular matrix support and controlling the release of cell growth and differentiation supporting drugs.
Collapse
Affiliation(s)
- Marina Sokolsky-Papkov
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
32
|
Li J, Beaussart A, Chen Y, Mak AFT. Transfer of apatite coating from porogens to scaffolds: Uniform apatite coating within porous poly(DL-lactic-co-glycolic acid) scaffoldin vitro. J Biomed Mater Res A 2007; 80:226-33. [PMID: 17072848 DOI: 10.1002/jbm.a.31096] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Strategies to bone tissue engineering have focused on the use of synthetic or natural degradable materials as scaffolds for cell transplantation to guide bone regeneration. Biocompatibility, biodegradability, biomechanical integrity, and osteoconductivity are important requirements for the scaffold materials. This study explored a new approach of apatite coating to enhance the osteoconductivity of a synthetic degradable poly(DL-lactic-co-glycolic acid) (PLGA) scaffold. The new approach was developed to ensure a relatively uniform apatite coating on the interior pore surfaces deep inside a scaffold, even for a relatively thick scaffold with small pores. Apatite was first coated on the surface of paraffin spheres of the desirable sizes. The paraffin spheres were then molded to form a foam. PLGA/pyridine solution was cast into the interspaces among the paraffin spheres. After the paraffin spheres were dissolved and removed by cyclohexane, PLGA scaffold with controlled pore size, good interconnectivity and high porosity was obtained with apatite left on the pore surface uniformly throughout the whole scaffold. The scaffold and apatite coating were characterized using thermogravimetry analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffractometry.
Collapse
Affiliation(s)
- Jiashen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
33
|
Kang HG, Kim SY, Lee YM. Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2006; 79:388-97. [PMID: 16767729 DOI: 10.1002/jbm.b.30553] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Porous gelatin scaffolds were prepared using a modified overrun process, which is a novel method for preparing a porous matrix by injecting air and mixing polymer solution at low temperature. The pores in the scaffolds formed by the overrun process exhibited a dual-pore structure due to the injection of air bubbles and ice recrystallization. However, the morphology of the overrun-processed gelatin scaffolds had closed pore structures. The closed pore structure was reformed into a uniformly distributed and interconnected open structure by the combination of the overrun process and a particle-leaching technique (NaCl and sucrose). The mechanical strength and biodegradation rate of gelatin scaffolds were controlled by the matrix porosity and concentration of gelatin solution. Despite higher porosity, overrun processed gelatin scaffolds showed similar mechanical strength to freeze-dried scaffolds. After 1 week of in vitro culturing, the fibroblasts in overrun-processed scaffolds were widely distributed on the surface of the scaffold pores, whereas cells seeded in freeze-dried scaffolds were mainly placed on the top and bottom of the scaffolds. Therefore, the overrun process combined with a particle-leaching technique can be applied to fabricate porous scaffolds with a desirable cellular structure for tissue engineering applications.
Collapse
Affiliation(s)
- Hyun Goo Kang
- School of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea
| | | | | |
Collapse
|