1
|
Davaritouchaee M, Mosleh I, Dadmohammadi Y, Abbaspourrad A. One-Step Oxidation of Orange Peel Waste to Carbon Feedstock for Bacterial Production of Polyhydroxybutyrate. Polymers (Basel) 2023; 15:697. [PMID: 36771998 PMCID: PMC9920450 DOI: 10.3390/polym15030697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Orange peels are an abundant food waste stream that can be converted into useful products, such as polyhydroxyalkanoates (PHAs). Limonene, however, is a key barrier to building a successful biopolymer synthesis from orange peels as it inhibits microbial growth. We designed a one-pot oxidation system that releases the sugars from orange peels while eliminating limonene through superoxide (O2• -) generated from potassium superoxide (KO2). The optimum conditions were found to be treatment with 0.05 M KO2 for 1 h, where 55% of the sugars present in orange peels were released and recovered. The orange peel sugars were then used, directly, as a carbon source for polyhydroxybutyrate (PHB) production by engineered Escherichia coli. Cell growth was improved in the presence of the orange peel liquor with 3 w/v% exhibiting 90-100% cell viability. The bacterial production of PHB using orange peel liquor led to 1.7-3.0 g/L cell dry weight and 136-393 mg (8-13 w/w%) ultra-high molecular weight PHB content (Mw of ~1900 kDa) during a 24 to 96 h fermentation period. The comprehensive thermal characterization of the isolated PHBs revealed polymeric properties similar to PHBs resulting from pure glucose or fructose. Our one-pot oxidation process for liberating sugars and eliminating inhibitory compounds is an efficient and easy method to release sugars from orange peels and eliminate limonene, or residual limonene post limonene extraction, and shows great promise for extracting sugars from other complex biomass materials.
Collapse
Affiliation(s)
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York, NY 14853, USA
| |
Collapse
|
2
|
De la Ossa JG, Danti S, Esposito Salsano J, Azimi B, Tempesti V, Barbani N, Digiacomo M, Macchia M, Uddin MJ, Cristallini C, Di Stefano R, Lazzeri A. Electrospun Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Olive Leaf Extract Fiber Mesh as Prospective Bio-Based Scaffold for Wound Healing. Molecules 2022; 27:6208. [PMID: 36234738 PMCID: PMC9570516 DOI: 10.3390/molecules27196208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 12/02/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.
Collapse
Affiliation(s)
- Jose Gustavo De la Ossa
- Cardiovascular Research Laboratory, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Jasmine Esposito Salsano
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Veronika Tempesti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals & Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals & Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Mohammed Jasim Uddin
- Photonics and Energy Research Laboratory, Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes (IPCF) @ Pisa, CNR, 56126 Pisa, Italy
| | - Rossella Di Stefano
- Cardiovascular Research Laboratory, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals & Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
3
|
Ji M, Li J, Li F, Wang X, Man J, Li J, Zhang C, Peng S. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydr Polym 2022; 281:119078. [DOI: 10.1016/j.carbpol.2021.119078] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/02/2022]
|
4
|
Gómez-Gast N, López Cuellar MDR, Vergara-Porras B, Vieyra H. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers. Polymers (Basel) 2022; 14:1114. [PMID: 35335445 PMCID: PMC8950292 DOI: 10.3390/polym14061114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Initiatives to reduce plastic waste are currently under development worldwide. As a part of it, the European Union and private and public organizations in several countries are designing and implementing regulations for single-use plastics. For example, by 2030, plastic packaging and food containers must be reusable or recyclable. In another approach, researchers are developing biopolymers using biodegradable thermoplastics, such as polyhydroxyalkanoates (PHAs), to replace fossil derivatives. However, their production capacity, high production costs, and poor mechanical properties hinder the usability of these biopolymers. To overcome these limitations, biomaterials reinforced with natural fibers are acquiring more relevance as the world of bioplastics production is increasing. This review presents an overview of PHA-vegetal fiber composites, the effects of the fiber type, and the production method's impact on the mechanical, thermal, barrier properties, and biodegradability, all relevant for biopackaging. To acknowledge the behaviors and trends of the biomaterials reinforcement field, we searched for granted patents focusing on bio-packaging applications and gained insight into current industry developments and contributions.
Collapse
Affiliation(s)
- Natalia Gómez-Gast
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Ma Del Rocío López Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH), Av. Universidad Km. 1, Ex-Hda. De Aquetzalpa AP 32, Tulancingo de Bravo 43600, Mexico;
| | - Berenice Vergara-Porras
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Horacio Vieyra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eduardo Monroy Cardenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
5
|
Abstract
The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.
Collapse
|
6
|
Active polyhydroxybutyrate (PHB)/sugarcane bagasse fiber-based anti-microbial green composite: material characterization and degradation studies. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01972-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Attallah OA, Mojicevic M, Garcia EL, Azeem M, Chen Y, Asmawi S, Brenan Fournet M. Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties. Polymers (Basel) 2021; 13:2155. [PMID: 34208796 PMCID: PMC8271944 DOI: 10.3390/polym13132155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalcitrant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (Mw) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bioplastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed-identifying both macro and micro routes promoting favourable bioplastics' production, processability and performance.
Collapse
Affiliation(s)
- Olivia A. Attallah
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Marija Mojicevic
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Eduardo Lanzagorta Garcia
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Muhammad Azeem
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Yuanyuan Chen
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| | - Shumayl Asmawi
- Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| | - Margaret Brenan Fournet
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (O.A.A.); (E.L.G.); (M.A.); (Y.C.); (M.B.F.)
| |
Collapse
|
8
|
Raturi G, Shree S, Sharma A, Panesar PS, Goswami S. Recent approaches for enhanced production of microbial polyhydroxybutyrate: Preparation of biocomposites and applications. Int J Biol Macromol 2021; 182:1650-1669. [PMID: 33992649 DOI: 10.1016/j.ijbiomac.2021.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
In modern decades, an increase in environmental awareness has attracted the keen interest of researchers to investigate eco-sustainable, recyclable materials to minimize reliance on petroleum-based polymeric compounds. Poly (3-hydroxybutyrate) is amorphous, linear, and biodegradable bacterial polyesters that belong to the polyhydroxyalkanoates family with enormous applications in many fields. The present review provides comprehensive information on polyhydroxybutyrate production from different biomass feedstock. Various studies on PHB production by genetically engineered bacterial cells and optimization of parameters have been discussed. Recent technological innovation in processing polyhydroxybutyrate-based biocomposite through the different process has also been examined. Besides this, the potential applications of the derived competent biocomposites in the other fields have been depicted.
Collapse
Affiliation(s)
- Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-food Biotechnology Institute, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shweta Shree
- Department of Biotechnology, Texas A&M University, USA
| | - Amita Sharma
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Saswata Goswami
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
9
|
Turco R, Santagata G, Corrado I, Pezzella C, Di Serio M. In vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Front Bioeng Biotechnol 2021; 8:619266. [PMID: 33585417 PMCID: PMC7874203 DOI: 10.3389/fbioe.2020.619266] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
The transition toward "green" alternatives to petroleum-based plastics is driven by the need for "drop-in" replacement materials able to combine characteristics of existing plastics with biodegradability and renewability features. Promising alternatives are the polyhydroxyalkanoates (PHAs), microbial biodegradable polyesters produced by a wide range of microorganisms as carbon, energy, and redox storage material, displaying properties very close to fossil-fuel-derived polyolefins. Among PHAs, polyhydroxybutyrate (PHB) is by far the most well-studied polymer. PHB is a thermoplastic polyester, with very narrow processability window, due to very low resistance to thermal degradation. Since the melting temperature of PHB is around 170-180°C, the processing temperature should be at least 180-190°C. The thermal degradation of PHB at these temperatures proceeds very quickly, causing a rapid decrease in its molecular weight. Moreover, due to its high crystallinity, PHB is stiff and brittle resulting in very poor mechanical properties with low extension at break, which limits its range of application. A further limit to the effective exploitation of these polymers is related to their production costs, which is mostly affected by the costs of the starting feedstocks. Since the first identification of PHB, researchers have faced these issues, and several strategies to improve the processability and reduce brittleness of this polymer have been developed. These approaches range from the in vivo synthesis of PHA copolymers, to the enhancement of post-synthesis PHB-based material performances, thus the addition of additives and plasticizers, acting on the crystallization process as well as on polymer glass transition temperature. In addition, reactive polymer blending with other bio-based polymers represents a versatile approach to modulate polymer properties while preserving its biodegradability. This review examines the state of the art of PHA processing, shedding light on the green and cost-effective tailored strategies aimed at modulating and optimizing polymer performances. Pioneering examples in this field will be examined, and prospects and challenges for their exploitation will be presented. Furthermore, since the establishment of a PHA-based industry passes through the designing of cost-competitive production processes, this review will inspect reported examples assessing this economic aspect, examining the most recent progresses toward process sustainability.
Collapse
Affiliation(s)
- Rosa Turco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials, National Council of Research, Pozzuoli, Italy
| | - Iolanda Corrado
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cinzia Pezzella
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
10
|
Echeverri DA, Pérez WA, Inciarte HC, Rios LA. Accelerated weathering behavior of castor oil bio‐based thermosets. J Appl Polym Sci 2020. [DOI: 10.1002/app.49509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- David A. Echeverri
- Grupo Procesos Químicos IndustrialesUniversidad de Antioquia UdeA Medellín Colombia
| | - William A. Pérez
- Grupo Procesos Químicos IndustrialesUniversidad de Antioquia UdeA Medellín Colombia
| | - Helen C. Inciarte
- Grupo Procesos Químicos IndustrialesUniversidad de Antioquia UdeA Medellín Colombia
| | - Luis A. Rios
- Grupo Procesos Químicos IndustrialesUniversidad de Antioquia UdeA Medellín Colombia
| |
Collapse
|
11
|
González-López ME, Martín del Campo AS, Robledo-Ortíz JR, Arellano M, Pérez-Fonseca AA. Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Sánchez-Safont EL, Aldureid A, Lagarón JM, Cabedo L, Gámez-Pérez J. Study of the Compatibilization Effect of Different Reactive Agents in PHB/Natural Fiber-Based Composites. Polymers (Basel) 2020; 12:polym12091967. [PMID: 32872605 PMCID: PMC7570349 DOI: 10.3390/polym12091967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Fiber–matrix interfacial adhesion is one of the key factors governing the final properties of natural fiber-based polymer composites. In this work, four extrusion reactive agents were tested as potential compatibilizers in polyhydroxylbutyrate (PHB)/cellulose composites: dicumyl peroxide (DCP), hexamethylene diisocyanate (HMDI), resorcinol diglycidyl ether (RDGE), and triglycidyl isocyanurate (TGIC). The influence of the fibers and the different reactive agents on the mechanical properties, physical aging, and crystallization behavior were assessed. To evaluate the compatibilization effectiveness of each reactive agent, highly purified commercial cellulose fibers (TC90) were used as reference filler. Then, the influence of fiber purity on the compatibilization effect of the reactive agent HMDI was evaluated using untreated (U_RH) and chemically purified (T_RH) rice husk fibers, comparing the results with the ones using TC90 fibers. The results show that reactive agents interact with the polymer matrix at different levels, but all compositions showed a drastic embrittlement due to the aging of PHB. No clear compatibilization effect was found using DCP, RDGE, or TGIC reactive agents. On the other hand, the fiber–polymer interfacial adhesion was enhanced with HMDI. The purity of the fiber played an important role in the effectiveness of HMDI as a compatibilizer, since composites with highly purified fibers showed the greatest improvements in tensile strength and the most favorable morphology. None of the reactive agents negatively affected the compostability of PHB. Finally, thermoformed trays with good mold reproducibility were successfully obtained for PHB/T_RH/HMDI composition.
Collapse
Affiliation(s)
- Estefanía Lidón Sánchez-Safont
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (E.L.S.-S.); (A.A.); (L.C.)
| | - Abdulaziz Aldureid
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (E.L.S.-S.); (A.A.); (L.C.)
| | - José María Lagarón
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (E.L.S.-S.); (A.A.); (L.C.)
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (E.L.S.-S.); (A.A.); (L.C.)
- Correspondence:
| |
Collapse
|
13
|
Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110799. [DOI: 10.1016/j.msec.2020.110799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/09/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
14
|
Bodur MS, Bakkal M, Sonmez HE. A study on the photostabilizer additives on the textile fiber reinforced polymer composites: Mechanical, thermal, and physical analysis. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mehmet Safa Bodur
- Department of Material Science and NanotechnologyYeditepe UniversityIstanbul Turkey
| | - Mustafa Bakkal
- Department of Mechanical EngineeringIstanbul Technical UniversityIstanbul Turkey
| | - Hasret Ece Sonmez
- Department of Polymer Science and TechnologyIstanbul Technical UniversityIstanbul Turkey
| |
Collapse
|
15
|
|
16
|
Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications-A Review. MATERIALS 2016; 9:ma9060435. [PMID: 28773558 PMCID: PMC5456759 DOI: 10.3390/ma9060435] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic) acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites.
Collapse
|
17
|
Marega C, Marigo A. Effect of electrospun fibers of polyhydroxybutyrate filled with different organoclays on morphology, biodegradation, and thermal stability of poly(ε-caprolattone). J Appl Polym Sci 2015. [DOI: 10.1002/app.42342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Carla Marega
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 I-35131 Padova Italy
| | - Antonio Marigo
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 I-35131 Padova Italy
| |
Collapse
|
18
|
Srubar W, Wright Z, Tsui A, Michel A, Billington S, Frank C. Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2012.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|