1
|
Grosjean M, Girard E, Bethry A, Chagnon G, Garric X, Nottelet B. Degradable Bioadhesives Based on Star PEG-PLA Hydrogels for Soft Tissue Applications. Biomacromolecules 2023; 24:4430-4443. [PMID: 36524541 DOI: 10.1021/acs.biomac.2c01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue adhesives are interesting materials for wound treatment as they present numerous advantages compared to traditional methods of wound closure such as suturing and stapling. Nowadays, fibrin and cyanoacrylate glues are the most widespread commercial biomedical adhesives, but these systems display some drawbacks. In this study, degradable bioadhesives based on PEG-PLA star-shaped hydrogels are designed. Acrylate, methacrylate, and catechol functional copolymers are synthesized and used to design various bioadhesive hydrogels. Various types of mechanisms responsible for adhesion are investigated (physical entanglement and interlocking, physical interactions, chemical bonds), and the adhesive properties of the different systems are first studied on a gelatin model and compared to fibrin and cyanoacrylate references. Hydrogels based on acrylate and methacrylate reached adhesion strength close to cyanoacrylate (332 kPa) with values of 343 and 293 kPa, respectively, whereas catechol systems displayed higher values (11 and 19 kPa) compared to fibrin glue (7 kPa). Bioadhesives were then tested on mouse skin and human cadaveric colonic tissue. The results on mouse skin confirmed the potential of acrylate and methacrylate gels with adhesion strength close to commercial glues (15-30 kPa), whereas none of the systems led to high levels of adhesion on the colon. These data confirm that we designed a family of degradable bioadhesives with adhesion strength in the range of commercial glues. The low level of cytotoxicity of these materials is also demonstrated and confirm the potential of these hydrogels to be used as surgical adhesives.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Edouard Girard
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
- Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, Grenoble38043, France
- Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université Grenoble Alpes, Grenoble38058, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Grégory Chagnon
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| |
Collapse
|
2
|
Buwalda S. Advanced Functional Polymers for Unmet Medical Challenges. Biomacromolecules 2023; 24:4329-4332. [PMID: 37811641 DOI: 10.1021/acs.biomac.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A significant part of medicine relies on biomaterials, which are designed to interact with biological tissues for therapeutic or diagnostic purposes. A number of major trends can be distinguished in the multidisciplinary field of biomaterials science, including the precise synthesis of biomaterial building blocks, elucidation of biomaterial processing-structure-property correlations, as well as clarification of the interactions between living tissues and biomaterials. Moreover, advances in biofabrication facilitate the development of tailored implants with improved functionality, whereas recent achievements in medical imaging allow for a detailed evaluation of the performance and spatiotemporal behavior of medical devices and nanomedicine formulations.
Collapse
Affiliation(s)
- Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| |
Collapse
|
3
|
Grosjean M, Berne D, Caillol S, Ladmiral V, Nottelet B. Dynamic PEG-PLA/Hydroxyurethane Networks Based on Imine Bonds as Reprocessable Elastomeric Biomaterials. Biomacromolecules 2023; 24:3472-3483. [PMID: 37458381 DOI: 10.1021/acs.biomac.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The development of dynamic covalent chemistry opens the way to the design of materials able to be reprocessed by an internal exchange reaction under thermal stimulus. Imine exchange differs from other exchange reactions by its relatively low temperature of activation. In this study, amine-functionalized star-shaped PEG-PLA and an aldehyde-functionalized hydroxyurethane modifier were combined to produce PEG-PLA/hydroxyurethane networks incorporating imine bonds. The thermal and mechanical properties of these new materials were evaluated as a function of the initial ratio of amine/aldehyde used during synthesis. Rheological analyses highlighted the dynamic behavior of these vitrimers at moderate temperature (60-85 °C) and provided the flow activation energies. Additionally, the reprocessability of these PEG-PLA/hydroxyurethane vitrimers was assessed by comparing the material properties before reshaping and after three reprocessing cycles (1 ton, 1 h, 70 °C). Hence, these materials can easily be designed to satisfy a specific medical application without properties loss. This work opens the way to the development of a new generation of dynamic materials combining degradable PEG-PLA copolymers and hydroxyurethane modifiers, which could find applications in the shape of medical devices on-demand under mild conditions.
Collapse
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | | | | |
Collapse
|
4
|
El Yousfi R, Brahmi M, Dalli M, Achalhi N, Azougagh O, Tahani A, Touzani R, El Idrissi A. Recent Advances in Nanoparticle Development for Drug Delivery: A Comprehensive Review of Polycaprolactone-Based Multi-Arm Architectures. Polymers (Basel) 2023; 15:1835. [PMID: 37111982 PMCID: PMC10142392 DOI: 10.3390/polym15081835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Controlled drug delivery is a crucial area of study for improving the targeted availability of drugs; several polymer systems have been applied for the formulation of drug delivery vehicles, including linear amphiphilic block copolymers, but with some limitations manifested in their ability to form only nanoaggregates such as polymersomes or vesicles within a narrow range of hydrophobic/hydrophilic balance, which can be problematic. For this, multi-arm architecture has emerged as an efficient alternative that overcame these challenges, with many interesting advantages such as reducing critical micellar concentrations, producing smaller particles, allowing for various functional compositions, and ensuring prolonged and continuous drug release. This review focuses on examining the key variables that influence the customization of multi-arm architecture assemblies based on polycaprolactone and their impact on drug loading and delivery. Specifically, this study focuses on the investigation of the structure-property relationships in these formulations, including the thermal properties presented by this architecture. Furthermore, this work will emphasize the importance of the type of architecture, chain topology, self-assembly parameters, and comparison between multi-arm structures and linear counterparts in relation to their impact on their performance as nanocarriers. By understanding these relationships, more effective multi-arm polymers can be designed with appropriate characteristics for their intended applications.
Collapse
Affiliation(s)
- Ridouan El Yousfi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohamed Brahmi
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, University Mohamed Premier, P. B. 300, Nador 62700, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Rachid Touzani
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| |
Collapse
|
5
|
Grosjean M, Ouedraogo S, Déjean S, Garric X, Luchnikov V, Ponche A, Mathieu N, Anselme K, Nottelet B. Bioresorbable Bilayered Elastomer/Hydrogel Constructs with Gradual Interfaces for the Fast Actuation of Self-Rolling Tubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43719-43731. [PMID: 36121931 PMCID: PMC9524373 DOI: 10.1021/acsami.2c11264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
In the biomedical field, self-rolling materials provide interesting opportunities to develop medical devices suitable for drug or cell encapsulation. However, to date, a major limitation for medical applications is the use of non-biodegradable and non-biocompatible polymers that are often reported for such applications or the slow actuation witnessed with degradable systems. In this work, biodegradable self-rolling tubes that exhibit a spontaneous and rapid actuation when immersed in water are designed. Photo-crosslinkable hydrophilic and hydrophobic poly(ethylene glycol)-poly(lactide) (PEG-PLA) star-shaped copolymers are prepared and used to prepare bilayered constructs. Thanks to the discrete mechanical and swelling properties of each layer and the cohesive/gradual nature of the interface, the resulting bilayered films are able to self-roll in water in less than 30 s depending on the nature of the hydrophilic layer and on the shape of the sample. The cytocompatibility and degradability of the materials are demonstrated and confirm the potential of such self-rolling resorbable biomaterials in the field of temporary medical devices.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34090 Montpellier France
| | | | - Stéphane Déjean
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34090 Montpellier France
| | - Xavier Garric
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34090 Montpellier France
- Department
of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Valeriy Luchnikov
- Université
de Haute-Alsace, CNRS, IS2M UMR7361, 68100 Mulhouse, France
| | - Arnaud Ponche
- Université
de Haute-Alsace, CNRS, IS2M UMR7361, 68100 Mulhouse, France
| | - Noëlle Mathieu
- Institute
for Radioprotection and Nuclear Safety, IRSN, 92260 Fontenay-aux-Roses, France
| | - Karine Anselme
- Université
de Haute-Alsace, CNRS, IS2M UMR7361, 68100 Mulhouse, France
| | - Benjamin Nottelet
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34090 Montpellier France
| |
Collapse
|
6
|
Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem 2022; 10:946183. [PMID: 36212064 PMCID: PMC9532752 DOI: 10.3389/fchem.2022.946183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
The progress of nanotechnology enables us to make use of the special properties of materials on the nanoscale and open up many new fields of biomedical research. Among them, thermosensitive nanomaterials stand out in many biomedical fields because of their “intelligent” behavior in response to temperature changes. However, this article mainly reviews the research progress of thermosensitive nanomaterials, which are popular in biomedical applications in recent years. Here, we simply classify the thermally responsive nanomaterials according to the types of polymers, focusing on the mechanisms of action and their advantages and potential. Finally, we deeply investigate the applications of thermosensitive nanomaterials in drug delivery, tissue engineering, sensing analysis, cell culture, 3D printing, and other fields and probe the current challenges and future development prospects of thermosensitive nanomaterials.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| | - Li Sun
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Qianqian Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
7
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
8
|
Synthesis, physical and mechanical properties of amphiphilic hydrogels based on polycaprolactone and polyethylene glycol for bioapplications: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Li Z, Liu L, Chen Y. Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier. Acta Biomater 2020; 110:119-128. [PMID: 32438111 DOI: 10.1016/j.actbio.2020.04.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
Tissue adhesion is a severe postoperative complication. Various strategies have been developed to minimize postoperative adhesion, but the clinical efficacy is still far from satisfactory. Herein, we present a dual dynamically crosslinked hydrogel to serve as a physical postoperative anti-adhesion barrier. The hydrogel was generated by dynamic chemical oxime bonding from alkoxyamine-terminated Pluronic F127 (AOP127) and oxidized hyaluronic acid (OHA), as well as hydrophobic association of AOP127. Rheological analysis demonstrated that the hydrogel exhibits temperature sensitivity. At 37 °C, it shows much higher modulus and higher stability than the Pluronic F127 hydrogel. Hemolytic assays suggested that the hydrogel undergoes low hemolysis. In addition, it exhibited anti-adhesion to blood cells in blood cell adhesion tests. It also showed an anti-attachment effect to fibroblasts and biocompatibility in vitro cell studies. Macroscopic evaluation and lap-shear tests revealed that the hydrogel has a moderate adhesive capacity to tissue, which is important for self-fixation. A rat model of sidewall defect-bowel abrasion was established to evaluate the anti-adhesion effect in vivo. The gross observation and pathological analysis revealed a significant reduction in postoperative peritoneal adhesion in the AOP127/OHA hydrogel-treated group than those treated with normal saline or Pluronic F127 hydrogel. Hence, the dual dynamically crosslinked hydrogel with self-fixable capacity may be suitable as a physical barrier for postoperative adhesion prevention. STATEMENT OF SIGNIFICANCE: Despite the development of numerous postoperative anti-adhesion barriers, their anti-adhesion efficacy is still limited in clinical trials due to poor tissue adhesion and rapid clearance from injured areas. Herein, we have developed a dual dynamic crosslinked hydrogel, generated by dynamic oxime bonds and hydrophobic interactions. The hydrogel is temperature-sensitive and demonstrates moderate tissue adhesion capacity, which allows for self-fixation when applied to defects. The introduction of dynamic covalent bonds improves the stability of the hydrogel. Moreover, the hydrogel not only displays appropriate hemocompatibility, cytocompatibility and anti-adhesion of blood cells and fibroblasts, but it also effectively contributes to preventing postoperative peritoneal adhesions in vivo. Hence, this dual dynamic crosslinked hydrogel may have potential applications as a physical barrier in clinical practice.
Collapse
Affiliation(s)
- Ziyi Li
- School of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems. Int J Nanomedicine 2020; 15:4541-4572. [PMID: 32617004 PMCID: PMC7326401 DOI: 10.2147/ijn.s248987] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Among modern drug formulations, stimuli-responsive hydrogels also called "smart hydrogels" deserve a special attention. The basic feature of this system is the ability to change their mechanical properties, swelling ability, hydrophilicity, bioactive molecules permeability, etc., influenced by various stimuli, such as temperature, pH, electromagnetic radiation, magnetic field and biological factors. Therefore, stimuli-responsive matrices can be potentially used in tissue engineering, cell cultures and technology of innovative drug delivery systems (DDSs), releasing the active substances under the control of internal or external stimuli. Moreover, smart hydrogels can be used as injectable DDSs, due to gel-sol transition connected with in situ cross-linking process. Innovative smart hydrogel DDSs can be utilized as matrices for targeted therapy, which enhances the effectiveness of tumor chemotherapy and subsequently limits systemic toxicity. External stimulus sensitivity allows remote control over the drug release profile and gel formation. On the other hand, internal factors provide drg accumulation in tumor tissue and reduce the concentration of active drug form in healthy tissue. In this report, we summarise the basic knowledge and chemical strategies for the synthetic smart hydrogel DDSs applied in antitumor therapy.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| |
Collapse
|
11
|
Seppälä J, van Bochove B, Lendlein A. Developing Advanced Functional Polymers for Biomedical Applications. Biomacromolecules 2020; 21:273-275. [DOI: 10.1021/acs.biomac.9b01701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jukka Seppälä
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Bas van Bochove
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Andreas Lendlein
- Institute of Biomedical Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
El Jundi A, Buwalda S, Bethry A, Hunger S, Coudane J, Bakkour Y, Nottelet B. Double-Hydrophilic Block Copolymers Based on Functional Poly(ε-caprolactone)s for pH-Dependent Controlled Drug Delivery. Biomacromolecules 2019; 21:397-407. [DOI: 10.1021/acs.biomac.9b01006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ayman El Jundi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Sytze Buwalda
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Audrey Bethry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Sylvie Hunger
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Jean Coudane
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Youssef Bakkour
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| |
Collapse
|
13
|
Buwalda SJ, Bethry A, Hunger S, Kandoussi S, Coudane J, Nottelet B. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates. Eur J Pharm Biopharm 2019; 139:232-239. [PMID: 30954658 DOI: 10.1016/j.ejpb.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/25/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Fast in situ forming, chemically crosslinked hydrogels were prepared by the amidation reaction between N-succinimidyl ester end groups of multi-armed poly(ethylene glycol) (PEG) and amino surface groups of poly(amido amine) (PAMAM) dendrimer generation 2.0. To control the properties of the PEG/PAMAM hydrogels, PEGs were used with different arm numbers (4 or 8) as well as different linkers (amide or ester) between the PEG arms and their terminal N-succinimidyl ester groups. Oscillatory rheology measurements showed that the hydrogels form within seconds after mixing the PEG and PAMAM precursor solutions. The storage moduli increased with crosslink density and reached values up to 2.3 kPa for hydrogels based on 4-armed PEG. Gravimetrical degradation experiments demonstrated that hydrogels with ester linkages between PEG and PAMAM degrade within 2 days, whereas amide-linked hydrogels were stable for several months. The release of two different model drugs (fluorescein isothiocyanate-dextran with molecular weights of 4·103 and 2·106 g/mol, FITC-DEX4K and FITC-DEX2000K, respectively) from amide-linked hydrogels was characterized by an initial burst followed by diffusion-controlled release, of which the rate depended on the size of the drug. In contrast, the release of FITC-DEX2000K from ester-containing hydrogels was governed mainly by degradation of the hydrogels and could be modulated via the ratio between ester and amide linkages. In vitro cytotoxicity experiments indicated that the PEG/PAMAM hydrogels are non-toxic to mouse fibroblasts. These in situ forming PEG/PAMAM hydrogels can be tuned with a broad range of mechanical, degradation and release properties and therefore hold promise as a platform for the delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sytze J Buwalda
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France.
| | - Audrey Bethry
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Sylvie Hunger
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Sofian Kandoussi
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Jean Coudane
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| |
Collapse
|
14
|
Soni V, Pandey V, Asati S, Gour V, Tekade RK. Biodegradable Block Copolymers and Their Applications for Drug Delivery. BASIC FUNDAMENTALS OF DRUG DELIVERY 2019:401-447. [DOI: 10.1016/b978-0-12-817909-3.00011-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Wu T, Wei Z, Ren Y, Yu Y, Leng X, Li Y. Highly branched linear-comb random copolyesters of ε-caprolactone and δ-valerolactone: Isodimorphism, mechanical properties and enzymatic degradation behavior. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Stabilization of poly(ethylene glycol)-poly(ε-caprolactone) star block copolymer micelles via aromatic groups for improved drug delivery properties. J Colloid Interface Sci 2018; 514:468-478. [DOI: 10.1016/j.jcis.2017.12.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
17
|
Buwalda SJ, Dijkstra PJ, Feijen J. In situ forming stereocomplexed and post-photocrosslinked acrylated star poly(ethylene glycol)-poly(lactide) hydrogels. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|