1
|
Nath D, Pesaranhajiabbas E, Jahangiri F, Surendren A, Pal AK, Rodriguez-Uribe A, Misra M, Mohanty AK. Maleation of Biodegradable Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) by Reactive Extrusion: Effect of Initiator Concentration and a Chain Extender on Grafting Percentage and Thermal and Rheological Properties. ACS OMEGA 2024; 9:50175-50187. [PMID: 39741850 PMCID: PMC11683615 DOI: 10.1021/acsomega.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 10/30/2024] [Indexed: 01/03/2025]
Abstract
Recently, there has been immense interest in using biodegradable polymers to replace petro-derived polymers. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which is gaining popularity due to its biodegradability, is used in developing blends and composites for a variety of applications. To enhance the miscibility between different components of a material with PHBV, functionalization of the PHBV chain can be done. In this study, grafting of maleic anhydride (MA) onto PHBV was performed using organic peroxide also, called Luperox [2,5-dimethyl-2,5-di(tert-butylperoxy)hexane], as an initiator. The effects of different initiator and MA concentrations on the grafting percentage, gel content, rheology, and thermal properties were evaluated. Additionally, a chain extender (Joncryl ADR 4468) was added during the grafting process to prevent chain scission of PHBV during processing and to promote long-chain branching. Higher initiator concentrations played a significant role in increasing the grafting percentage. Adding the chain extender further enhanced the grafting percentage of the compatibilizers. Compatibilizers with chain extenders increased the grafting percentage by up to 91% compared with their counterparts without chain extenders. Differential scanning calorimetry analysis demonstrated that the melting temperature of the compatibilizers decreased by up to 8 °C with increasing initiator concentration. Furthermore, the thermal stability of maleic anhydride grafted PHBV (MA-g-PHBV) reduced at higher initiator content, likely attributed to the formation of low-molecular-weight species during processing. The maleated PHBV with a chain extender exhibited improved thermal stability, with an increase of up to 6 °C, attributed to an increase in molecular weight because of the chain extender. This can be corroborated by the rheological studies, which showed higher viscosity, particularly for MA-g-PHBV with chain extender. Therefore, this is the first ever scientific study to improve and analyze the grafting percentage of MA-g-PHBV using a combination of chain extender and varying initiator concentrations. This maleated PHBV with a higher grafting percentage will then facilitate the development of composites and blends with improved performance, even at low MA-g-PHBV concentrations.
Collapse
Affiliation(s)
- Debarshi Nath
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| | - Ehsan Pesaranhajiabbas
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| | - Fatemeh Jahangiri
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| | - Aarsha Surendren
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| | - Akhilesh Kumar Pal
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| | - Arturo Rodriguez-Uribe
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| | - Manjusri Misra
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| | - Amar K. Mohanty
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road
East, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
2
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
3
|
Gammino M, Gioia C, Maio A, Scaffaro R, Lo Re G. Chemical-free Reactive Melt Processing of Biosourced Poly(butylene-succinate-adipate) for Improved Mechanical Properties and Recyclability. ACS APPLIED POLYMER MATERIALS 2024; 6:5866-5877. [PMID: 38807952 PMCID: PMC11129176 DOI: 10.1021/acsapm.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Biosourced and biodegradable polyesters like poly(butylene succinate-co-butylene adipate) (PBSA) are gaining traction as promising alternatives to oil-based thermoplastics for single-use applications. However, the mechanical and rheological properties of PBSA are affected by its thermomechanical sensitivity during its melt processing, also hindering PBSA mechanical recycling. Traditional reactive melt processing (RP) methods use chemical additives to counteract these drawbacks, compromising sustainability. This study proposes a green reactive method during melt compounding for PBSA based on a comprehensive understanding of its thermomechanical degradative behavior. Under the hypothesis that controlled degradative paths during melt processing can promote branching/recombination reactions without the addition of chemical additives, we aim to enhance PBSA rheological and mechanical performance. An in-depth investigation of the in-line rheological behavior of PBSA was conducted using an internal batch mixer, exploring parameters such as temperature, screw rotation speed, and residence time. Their influence on PBSA chain scissions, branching/recombination, and cross-linking reactions were evaluated to identify optimal conditions for effective RP. Results demonstrate that specific processing conditions, for example, twelve minutes processing time, 200 °C temperature, and 60 rpm screw rotation speed, promote the formation of the long chain branched structure in PBSA. These structural changes resulted in a notable enhancement of the reacted PBSA rheological and mechanical properties, exhibiting a 23% increase in elastic modulus, a 50% increase in yield strength, and an 80% increase in tensile strength. The RP strategy also improved PBSA mechanical recycling, thus making it a potential replacement for low-density polyethylene (LDPE). Ultimately, this study showcases how finely controlling the thermomechanical degradation during reactive melt processing can improve the material's properties, enabling reliable mechanical recycling, which can serve as a green approach for other biodegradable polymers.
Collapse
Affiliation(s)
- Michele Gammino
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Claudio Gioia
- Department
of Physics, University of Trento, via Sommarive 14, Povo, 38123 Trento, Italy
| | - Andrea Maio
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Roberto Scaffaro
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Giada Lo Re
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Rannvagen 2A, 41258 Gothenburg, Sweden
- Wallenberg
Wood Science Centre, Kemigården 4, 41258 Gothenburg, Sweden
| |
Collapse
|
4
|
Garwacki M, Cudnik I, Dziadowiec D, Szymczak P, Andrzejewski J. The Development of Sustainable Polyethylene Terephthalate Glycol-Based (PETG) Blends for Additive Manufacturing Processing-The Use of Multilayered Foil Waste as the Blend Component. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1083. [PMID: 38473555 DOI: 10.3390/ma17051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The polymer foil industry is one of the leading producers of plastic waste. The development of new recycling methods for packaging products is one of the biggest demands in today's engineering. The subject of this research was the melt processing of multilayered PET-based foil waste with PETG copolymer. The resulting blends were intended for additive manufacturing processing using the fused deposition modeling (FDM) method. In order to improve the properties of the developed materials, the blends compounding procedure was conducted with the addition of a reactive chain extender (CE) and elastomeric copolymer used as an impact modifier (IM). The samples were manufactured using the 3D printing technique and, for comparison, using the traditional injection molding method. The obtained samples were subjected to a detailed characterization procedure, including mechanical performance evaluation, thermal analysis, and rheological measurements. This research confirms that PET-based film waste can be successfully used for the production of filament, and for most samples, the FDM printing process can be conducted without any difficulties. Unfortunately, the unmodified blends are characterized by brittleness, which makes it necessary to use an elastomer additive (IM). The presence of a semicrystalline PET phase improves the thermal resistance of the prepared blends; however, an annealing procedure is required for this purpose.
Collapse
Affiliation(s)
- Mikołaj Garwacki
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3 Str, 60-965 Poznan, Poland
| | - Igor Cudnik
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3 Str, 60-965 Poznan, Poland
| | - Damian Dziadowiec
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
- Eurocast Sp. z o.o., Wejherowska 9 Str, 84-220 Strzebielino, Poland
| | - Piotr Szymczak
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
- Eurocast Sp. z o.o., Wejherowska 9 Str, 84-220 Strzebielino, Poland
| | - Jacek Andrzejewski
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Str, 61-138 Poznan, Poland
| |
Collapse
|
5
|
Barandiaran A, Lascano D, Montanes N, Balart R, Selles MA, Moreno V. Improvement of the Ductility of Environmentally Friendly Poly(lactide) Composites with Posidonia oceanica Wastes Plasticized with an Ester of Cinnamic Acid. Polymers (Basel) 2023; 15:4534. [PMID: 38231960 PMCID: PMC10708467 DOI: 10.3390/polym15234534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
New composite materials were developed with poly(lactide) (PLA) and Posidonia oceanica fibers through reactive extrusion in the presence of dicumyl peroxide (DCP) and subsequent injection molding. The effect of different amounts of methyl trans-cinnamate (MTC) on the mechanical, thermal, thermomechanical, and wettability properties was studied. The results showed that the presence of Posidonia oceanica fibers generated disruptions in the PLA matrix, causing a decrease in the tensile mechanical properties and causing an impact on the strength due to the stress concentration phenomenon. Reactive extrusion with DCP improved the PO/PLA interaction, diminishing the gap between the fibers and the surrounding matrix, as corroborated by field emission scanning electron microscopy (FESEM). It was observed that 20 phr (parts by weight of the MTC, per one hundred parts by weight of the PO/PLA composite) led to a noticeable plasticizing effect, significantly increasing the elongation at break from 7.1% of neat PLA to 31.1%, which means an improvement of 338%. A considerable decrease in the glass transition temperature, from 61.1 °C of neat PLA to 41.6 °C, was also observed. Thermogravimetric analysis (TGA) showed a loss of thermal stability of the plasticized composites, mainly due to the volatility of the cinnamate ester, leading to a decrease in the onset degradation temperature above 10 phr MTC.
Collapse
Affiliation(s)
| | - Diego Lascano
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| | | | | | | | - Virginia Moreno
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| |
Collapse
|
6
|
Julinová M, Šašinková D, Minařík A, Kaszonyiová M, Kalendová A, Kadlečková M, Fayyazbakhsh A, Koutný M. Comprehensive Biodegradation Analysis of Chemically Modified Poly(3-hydroxybutyrate) Materials with Different Crystal Structures. Biomacromolecules 2023; 24:4939-4957. [PMID: 37819211 PMCID: PMC10646986 DOI: 10.1021/acs.biomac.3c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
This work presents a comprehensive analysis of the biodegradation of polyhydroxybutyrate (PHB) and chemically modified PHB with different chemical and crystal structures in a soil environment. A polymer modification reaction was performed during preparation of the chemically modified PHB films, utilizing 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane as a free-radical initiator and maleic anhydride. Films of neat PHB and chemically modified PHB were prepared by extrusion and thermocompression. The biological agent employed was natural mixed microflora in the form of garden soil. The course and extent of biodegradation of the films was investigated by applying various techniques, as follows: a respirometry test to determine the production of carbon dioxide through microbial degradation; scanning electron microscopy (SEM); optical microscopy; fluorescence microscopy; differential scanning calorimetry (DSC); and X-ray diffraction (XRD). Next-generation sequencing was carried out to study the microbial community involved in biodegradation of the films. Findings from the respirometry test indicated that biodegradation of the extruded and chemically modified PHB followed a multistage (2-3) course, which varied according to the spatial distribution of amorphous and crystalline regions and their spherulitic morphology. SEM and polarized optical microscopy (POM) confirmed that the rate of biodegradation depended on the availability of the amorphous phase in the interspherulitic region and the width of the interlamellar region in the first stage, while dependence on the size of spherulites and thickness of spherulitic lamellae was evident in the second stage. X-ray diffraction revealed that orthorhombic α-form crystals with helical chain conformation degraded concurrently with β-form crystals with planar zigzag conformation. The nucleation of PHB crystals after 90 days of biodegradation was identified by DSC and POM, a phenomenon which impeded biodegradation. Fluorescence microscopy evidenced that the crystal structure of PHB affected the physiological behavior of soil microorganisms in contact with the surfaces of the films.
Collapse
Affiliation(s)
- Markéta Julinová
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| | - Dagmar Šašinková
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| | - Antonín Minařík
- Department
of Physics and Material Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlin, Czech Republic
| | - Martina Kaszonyiová
- Department
of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Alena Kalendová
- Department
of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Markéta Kadlečková
- Department
of Physics and Material Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlin, Czech Republic
| | - Ahmad Fayyazbakhsh
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| | - Marek Koutný
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| |
Collapse
|
7
|
The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites. Polymers (Basel) 2022; 14:polym14235078. [PMID: 36501477 PMCID: PMC9737336 DOI: 10.3390/polym14235078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Polyhedral oligomeric silsesquioxane POSS nanoparticles can be applied as reinforcing additives modifying various properties of biodegradable polymers. The effects of aminopropylisobutyl POSS (amine-POSS), trisilanolisooctyl-POSS (HO-POSS) and glycidyl-POSS (Gly-POSS) on the viscoelastic, thermal properties and crystallization of biodegradable poly(ε-caprolactone) PCL were studied. The analysis of the viscoelastic properties at ambient temperature indicated that aminopropylisobutyl POSS (amine-POSS) and glycidyl-POSS (Gly-POSS) enhanced the dynamic mechanical properties of PCL. The increase in the storage shear modulus G' and loss modulus G″ was observed. The plasticizing effect of trisilanolisooctyl POSS (HO-POSS) due to the presence of long isoctyl groups was confirmed. As a result, the crystallization of PCL was facilitated and the degree of crystallinity of χc increased up to 50.9%. The damping properties and the values of tan δ for PCL/HO-POSS composition increased from 0.052 to 0.069. The TGA results point out the worsening of the PCL thermal stability, with lower values of T0.5%, T1% and T3%. Both HO-POSS and Gly-POSS facilitated the relaxation of molten PCL. The presence of Gly-POSS influenced the changes that occurred in the viscoelastic properties of the molten PCL due to the thermo-mechanical degradation of the material; a positive impact was observed.
Collapse
|
8
|
Vázquez‐Villegas P, Sánchez M, Heredia‐Olea E, Pérez‐Carrillo E. Explorative Study of Reactive Extrusion Over Nixtamalization‐Maize Pericarp Residue: Effect on Dietary Fibre, Resistant Starch, and Nixtamalized Corn Flour Tortillas. STARCH-STARKE 2022. [DOI: 10.1002/star.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patricia Vázquez‐Villegas
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| | - Marli Sánchez
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| | - Erick Heredia‐Olea
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| | - Esther Pérez‐Carrillo
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| |
Collapse
|
9
|
Baseline Data of Low-Density Polyethylene Continuous Pyrolysis for Liquid Fuel Manufacture. RECYCLING 2022. [DOI: 10.3390/recycling7010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recycling of end-of-life plastics is a problem, since small parts can be returned into circulation. The rest is burned, landfilled or recycled into low-quality heating oil by pyrolysis methods. The disadvantages of this method are the need to dispose the formed by-product, pyrolytic carbon, the poor quality of produced liquid fuel and the low productivity of the method associated with the periodicity of the process. In this work, methods of thermogravimetry and chromatography–mass spectrometry (GC-MS) have been used to study the co-pyrolysis products of low-density polyethylene (LDPE) and oxygen-containing substances at the pressures of 4–8 MPa and temperatures of 520–620 °C. Experiments have highlighted the conditions needed for producing of high-quality liquid fuel. Initial data have been prepared for the design of a continuous pyrolysis reactor to dispose polymer waste for the production of bio-oil which would be available to enter the petrochemical products market.
Collapse
|
10
|
Loskot J, Jezbera D, Bezrouk A, Doležal R, Andrýs R, Francová V, Miškář D, Myslivcová Fučíková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation. MATERIALS 2021; 14:ma14185462. [PMID: 34576686 PMCID: PMC8467320 DOI: 10.3390/ma14185462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Polydioxanone (PPDX), as an FDA approved polymer in tissue engineering, is an important component of some promising medical devices, e.g., biodegradable stents. The hydrolytic degradation of polydioxanone stents plays a key role in the safety and efficacy of treatment. A new fast and convenient method to quantitatively evaluate the hydrolytic degradation of PPDX stent material was developed. PPDX esophageal stents were degraded in phosphate-buffered saline for 24 weeks. For the first time, the changes in Raman spectra during PPDX biodegradation have been investigated here. The level of PPDX hydrolytic degradation was determined from the Raman spectra by calculating the area under the 1732 cm-1 peak shoulder. Raman spectroscopy, unlike Fourier transform infrared (FT-IR) spectroscopy, is also sensitive enough to monitor the decrease in the dye content in the stents during the degradation. Observation by a scanning electron microscope showed gradually growing cracks, eventually leading to the stent disintegration. The material crystallinity was increasing during the first 16 weeks, suggesting preferential degradation of the amorphous phase. Our results show a new easy and reliable way to evaluate the progression of PPDX hydrolytic degradation. The proposed approach can be useful for further studies on the behavior of PPDX materials, and for clinical practice.
Collapse
Affiliation(s)
- Jan Loskot
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Daniel Jezbera
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- Correspondence:
| | - Rafael Doležal
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (R.D.); (R.A.)
| | - Rudolf Andrýs
- Department of Chemistry, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (R.D.); (R.A.)
| | - Vendula Francová
- ELLA-CS, s.r.o., Milady Horákové 504/45, 500 06 Hradec Králové, Czech Republic;
| | - Dominik Miškář
- Department of Physics, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic; (J.L.); (D.J.); (D.M.)
| | - Alena Myslivcová Fučíková
- Department of Biology, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
11
|
Rossi F, Zaltieri M, Sacchetti A, Masi M. Functionalization of Nylon-6,6 with Polyetheramine Improves Wettability and Antibacterial Properties. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milan 20131, Italy
| | - Mauro Zaltieri
- Golden Lady Company S.p.A., via Leopardi 3/5, Castiglione delle Stiviere (MN) 46043, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milan 20131, Italy
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, Milan 20131, Italy
| |
Collapse
|
12
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
13
|
Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5030090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The utilization of post-consumer car tires is an essential issue from an ecological and economic point of view. One of the simplest and the least harmful methods is their material recycling resulting in ground tire rubber (GTR), which can be further applied as fillers for polymer-based composites. Nevertheless, insufficient interfacial interactions implicate the necessity of GTR modification before introduction into polymer matrices. In this study, we investigated the influence of rapeseed oil-assisted thermo-mechanical treatment of GTR using a reactive extrusion process on the processing, structure, and performance of flexible polyurethane/GTR composite foams. Applied modifications affected the processing of polyurethane systems. They caused a noticeable reduction in the average cell size of foams, which was attributed to the potential nucleating activity of solid particles and changes in surface tension caused by the presence of oil. Such an effect was especially pronounced for the waste rapeseed oil, which resulted in the highest content of closed cells. Structural changes caused by GTR modification implicated the enhancement of foams’ strength. Mechanical performance was significantly affected by the applied modifications due to the changes in glass transition temperature. Moreover, the incorporation of waste GTR particles into the polyurethane matrix noticeably improved its thermal stability.
Collapse
|
14
|
Avella A, Mincheva R, Raquez JM, Lo Re G. Substantial Effect of Water on Radical Melt Crosslinking and Rheological Properties of Poly(ε-Caprolactone). Polymers (Basel) 2021; 13:polym13040491. [PMID: 33557338 PMCID: PMC7915490 DOI: 10.3390/polym13040491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
One-step reactive melt processing (REx) via radical reactions was evaluated with the aim of improving the rheological properties of poly(ε-caprolactone) (PCL). In particular, a water-assisted REx was designed under the hypothesis of increasing crosslinking efficiency with water as a low viscous medium in comparison with a slower PCL macroradicals diffusion in the melt state. To assess the effect of dry vs. water-assisted REx on PCL, its structural, thermo-mechanical and rheological properties were investigated. Water-assisted REx resulted in increased PCL gel fraction compared to dry REx (from 1–34%), proving the rationale under the formulated hypothesis. From dynamic mechanical analysis and tensile tests, the crosslink did not significantly affect the PCL mechanical performance. Dynamic rheological measurements showed that higher PCL viscosity was reached with increasing branching/crosslinking and the typical PCL Newtonian behavior was shifting towards a progressively more pronounced shear thinning. A complete transition from viscous- to solid-like PCL melt behavior was recorded, demonstrating that higher melt elasticity can be obtained as a function of gel content by controlled REx. Improvement in rheological properties offers the possibility of broadening PCL melt processability without hindering its recycling by melt processing.
Collapse
Affiliation(s)
- Angelica Avella
- Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), B-7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), B-7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Giada Lo Re
- Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|