1
|
Li S, Wang C, Cai W, Xu W, Qi L, Wang J, Zhang M, Song Z, Zhang D, Gao J, Song L, Zhu H, Xing W. Significantly suppressing CO release achieved by the catalysis effect of nanostructured rare earth/manganese oxides: Application in flame retardant thermoplastic polyurethane. J Colloid Interface Sci 2025; 679:30-39. [PMID: 39437654 DOI: 10.1016/j.jcis.2024.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
There is significant smoke and toxic volatiles generated from the combustion of thermoplastic polyurethane (TPU), which has compromised its application and posed a significant threat to human life. Here, the hydrothermal-citrate complexation method synthesised the rare earth Mn-based composite catalyst and blended with TPU to mitigate smoke release and toxic gas generation during TPU combustion. The results demonstrate that the inclusion of 3 wt% Mn-La and Mn-Ce catalysts into TPU leads to a 41.3% and 33.6% decrease in maximum smoke density (Ds max), respectively, along with a 52.4% and 50.5% reduction in peak CO production rate (pCOPR). The mechanism of rare earth Mn-based catalyst-based smoke suppression and toxicity reduction in TPU is explained at a microscopic scale based on density functional theory (DFT) research: the introduction of catalyst bolsters the adsorption of O2 and CO on the surface of TPU nanocomposites and facilitates the oxidation of CO. Additionally, it can expedite the formation of dense carbon layers and impede heat and mass transfer. The TPU nanocomposites exhibit excellent flame retardancy and effective smoke suppression. A feasible strategy for manufacturing fire-safety TPU nanocomposites with favorable comprehensive properties is proposed.
Collapse
Affiliation(s)
- Suhong Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Chuanshen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Wei Cai
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Wenzong Xu
- School of Materials Science and Chemical Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, Anhui 230601, PR China
| | - Liangyuan Qi
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Jing Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Mingtong Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Zhimin Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Di Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Jing Gao
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Hongyang Zhu
- Hefei Hualing Co., Ltd., 176 Jinxiu Road, Hefei, Anhui 230011, PR China
| | - Weiyi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| |
Collapse
|
2
|
Luo Y, Geng Z, Zhang W, He J, Yang R. Strategy for Constructing Phosphorus-Based Flame-Retarded Polyurethane Elastomers for Advanced Performance in Long-Term. Polymers (Basel) 2023; 15:3711. [PMID: 37765565 PMCID: PMC10537912 DOI: 10.3390/polym15183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Polyurethane elastomer (PUE), which is widely used in coatings for construction, transportation, electronics, aerospace, and other fields, has excellent physical properties. However, polyurethane elastomers are flammable, which limits their daily use, so the flame retardancy of polyurethane elastomers is very important. Reactive flame retardants have the advantages of little influence on the physical properties of polymers and low tendency to migrate out. Due to the remarkable needs of non-halogenated flame retardants, phosphorus flame retardant has gradually stood out as the main alternative. In this review, we focus on the fire safety of PUE and provide a detailed overview of the current molecular design and mechanisms of reactive phosphorus-containing, as well as P-N synergistic, flame retardants in PUE. From the structural characteristics, several basic aspects of PUE are overviewed, including thermal performance, combustion performance, and mechanical properties. In addition, the perspectives on the future advancement of phosphorus-containing flame-retarded polyurethane elastomers (PUE) are also discussed. Based on the past research, this study provides prospects for the application of flame-retarded PUE in the fields of self-healing materials, bio-based materials, wearable electronic devices, and solid-state electrolytes.
Collapse
Affiliation(s)
| | - Zhishuai Geng
- National Engineering Technology Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenchao Zhang
- National Engineering Technology Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
3
|
Li M, Chen Y, Kong Z, Sun Z, Qian L. Impact of a Novel Phosphoramide Flame Retardant on the Fire Behavior and Transparency of Thermoplastic Polyurethane Elastomers. ACS OMEGA 2023; 8:18151-18164. [PMID: 37251156 PMCID: PMC10210028 DOI: 10.1021/acsomega.3c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
In many application fields of thermoplastic polyurethane (TPU), excellent flame retardancy and transparency are required. However, higher flame retardancy is often at the expense of transparency. It is difficult to achieve high flame retardancy while maintaining the transparency of TPU. In this work, a kind of TPU composite with good flame retardancy and light transmittance was obtained by adding a new synthetic flame retardant named DCPCD, which was synthesized by the reaction of diethylenetriamine and diphenyl phosphorochloridate. Experimental results showed that 6.0 wt % DCPCD endowed TPU with a limiting oxygen index value of 27.3%, passing the UL 94 V-0 rating in the vertical burning test. The cone calorimeter test results showed that the peak heat release rate (PHRR) of the TPU composite was dramatically reduced from 1292 kW/m2 (pure TPU) to 514 kW/m2 by adding only 1 wt % DCPCD. With the increase of DCPCD contents, the PHRR and total heat release gradually decreased, and the char residue gradually increased. More importantly, the addition of DCPCD has little effect on the transparency and haze of TPU composites. In addition, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were carried out to investigate the morphology and composition of the char residue for TPU/DCPCD composites and explore the flame retardant mechanism of DCPCD in TPU.
Collapse
Affiliation(s)
- Mengqi Li
- School
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- China
Light Industry Engineering Technology Research Center of Advanced
Flame Retardants, Beijing 100048, China
- Petroleum
and Chemical Industry Engineering Laboratory of Non-halogen Flame
Retardants for Polymers, Beijing 100048, China
| | - Yajun Chen
- School
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- China
Light Industry Engineering Technology Research Center of Advanced
Flame Retardants, Beijing 100048, China
- Petroleum
and Chemical Industry Engineering Laboratory of Non-halogen Flame
Retardants for Polymers, Beijing 100048, China
| | - Zimeng Kong
- School
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- China
Light Industry Engineering Technology Research Center of Advanced
Flame Retardants, Beijing 100048, China
- Petroleum
and Chemical Industry Engineering Laboratory of Non-halogen Flame
Retardants for Polymers, Beijing 100048, China
| | - Zhe Sun
- School
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- China
Light Industry Engineering Technology Research Center of Advanced
Flame Retardants, Beijing 100048, China
- Petroleum
and Chemical Industry Engineering Laboratory of Non-halogen Flame
Retardants for Polymers, Beijing 100048, China
| | - Lijun Qian
- School
of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- China
Light Industry Engineering Technology Research Center of Advanced
Flame Retardants, Beijing 100048, China
- Petroleum
and Chemical Industry Engineering Laboratory of Non-halogen Flame
Retardants for Polymers, Beijing 100048, China
| |
Collapse
|
4
|
Han S, Yang F, Li Q, Sui G, Su X, Dai J, Ma J. Tackling smoke toxicity and fire hazards of thermoplastic polyurethane by mechanochemical combination of Cu₂O nanoparticles and zirconium phosphate nanosheets. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Xu Y, Wang B, Guo Z, Fang Z, Chen P, Li J. Effect of a bio-based copolymer containing lysine, dopamine and triazine on flame retardancy and mechanical properties of thermoplastic polyurethane/ammonium polyphosphate. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Fan X, Li S, Wang C, Deng Y, Zhang C, Wang Z. Research on Fluoropyridine-based Benzoxazine with High Thermal Stability and Excellent Flame Retardancy for its Application in Coatings. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Thermomechanical response of thermoplastic polyurethane used in MEX additive manufacturing over repetitive mechanical recycling courses. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Afshari M, Dinari M. Improving the Reaction-to-Fire Properties of Thermoplastic Polyurethane by New Phosphazene-Triazinyl-Based Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49003-49013. [PMID: 36282083 DOI: 10.1021/acsami.2c14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, an approach to simultaneously improve fire resistance and mechanical performance of thermoplastic polyurethane (TPU) was introduced through the penetration of a conjugated network containing nitrogen and phosphorus elements. For this purpose, a Bg-HCCP COF was synthesized through a solvothermal method from benzoguanamine (Bg) and hexachlorophosphazene (HCCP) monomers. Then, it was combined with TPU using the wet mixing method. The TPU/Bg-HCCP composites showed better mechanical strength than the untreated sample. The fire safety of TPU/Bg-HCCP composites was greatly improved by increasing the Bg-HCCP contents. The reduction of the peak heat release rate and the total heat release for the TPU/Bg-HCCP composite with 3 wt % Bg-HCCP were about 44.8 and 60.4%, respectively. Besides, the results showed that adding Bg-HCCP to TPU significantly improved the suppression of smoke generation so that 3% by weight of the fire retardant reduced the total smoke released by 53.1%. It also decreased the peak of the carbon monoxide production rate by 26.5%. Generally, our research provides a promising strategy for constructing flame-retardant composites with high performance.
Collapse
Affiliation(s)
- Mohaddeseh Afshari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| |
Collapse
|
9
|
Li YR, Li YM, Hu WJ, Wang DY. Cobalt ions loaded polydopamine nanospheres to construct ammonium polyphosphate for the improvement of flame retardancy of thermoplastic polyurethane elastomer. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Xu S, Liu J, Liu X, Li H, Gu X, Sun J, Zhang S. Preparation of Ni-Fe layered double hydroxides and its application in thermoplastic polyurethane with flame retardancy and smoke suppression. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Li Y, Qi L, Liu Y, Qiao J, Wang M, Liu X, Li S. Recent Advances in Halogen-Free Flame Retardants for Polyolefin Cable Sheath Materials. Polymers (Basel) 2022; 14:polym14142876. [PMID: 35890652 PMCID: PMC9322620 DOI: 10.3390/polym14142876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
With the continuous advancements of urbanization, the demand for power cables is increasing to replace overhead lines for energy transmission and distribution. Due to undesirable scenarios, e.g., the short circuit or poor contact, the cables can cause fire. The cable sheath has a significant effect on fire expansion. Thus, it is of great significance to carry out research on flame-retardant modification for cable sheath material to prevent fire accidents. With the continuous environmental concern, polyolefin (PO) is expected to gradually replace polyvinyl chloride (PVC) for cable sheath material. Moreover, the halogen-free flame retardants (FRs), which are the focus of this paper, will replace the ones with halogen gradually. The halogen-free FRs used in PO cable sheath material can be divided into inorganic flame retardant, organic flame retardant, and intumescent flame retardant (IFR). However, most FRs will cause severe damage to the mechanical properties of the PO cable sheath material, mainly reflected in the elongation at break and tensile strength. Therefore, the cooperative modification of PO materials for flame retardancy and mechanical properties has become a research hotspot. For this review, about 240 works from the literature related to FRs used in PO materials were investigated. It is shown that the simultaneous improvement for flame retardancy and mechanical properties mainly focuses on surface treatment technology, nanotechnology, and the cooperative effect of multiple FRs. The principle is mainly to improve the compatibility of FRs with PO polymers and/or increase the efficiency of FRs.
Collapse
Affiliation(s)
- Yan Li
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
- Correspondence:
| | - Leijie Qi
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Yifan Liu
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Junjie Qiao
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Maotao Wang
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Xinyue Liu
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Shasha Li
- State Grid Hebei Baoding Electric Power Company Limited, Baoding 071051, China;
| |
Collapse
|
12
|
Yang T, Gao Y, Liu X, Wang X, Ma B, He Y. Flame‐retardant polyamide 56 with high fire safety and good thermal performance. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tingting Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, College of Materials Science and Engineering Donghua University Shanghai China
| | - Yuanbo Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, College of Materials Science and Engineering Donghua University Shanghai China
| | - Xiucai Liu
- Cathay Biotechnology Incorporation Shanghai China
| | - Xueli Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, College of Materials Science and Engineering Donghua University Shanghai China
| | - Bomou Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, College of Materials Science and Engineering Donghua University Shanghai China
| | - Yong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, College of Materials Science and Engineering Donghua University Shanghai China
| |
Collapse
|
13
|
Metal-organic Framework ZIF-67 Functionalized MXene for Enhancing the Fire Safety of Thermoplastic Polyurethanes. NANOMATERIALS 2022; 12:nano12071142. [PMID: 35407260 PMCID: PMC9000687 DOI: 10.3390/nano12071142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
In this work, a novel functionalization strategy for ZIF-67-modified layered MXene was proposed, aiming at improving the fire safety of thermoplastic polyurethanes (TPU). The ZIF-67@MXene was verified by microscopic morphology, elemental composition, functional group species and crystal structure, and then the successfully prepared ZIF-67@MXene was introduced into the TPU material. When ZIF-67@MXene content was only 0.5 wt%, the peak heat release rate, total heat release rate, peak smoke release rate, total smoke release rate, and CO yield of the TPU/ZIF-67@MXene composites were reduced by 26%, 9%, 50%, and 22%, respectively, compared with the pure TPU. The thermogravimetric tests showed that the residual char of TPU/ZIF-67@MXene composites was the most in all samples. In short, the high-quality carbon layer of TPU/ZIF-67@MXene composites acts as a physical barrier to the transfer of heat and toxic gases, greatly improving the flame retardant properties of the TPU polymer.
Collapse
|
14
|
Zhang Z, Wang S, Dong C, Liu J, Kong D, Sun H, Lu Z. Comparison of differences in the flame retardancy of cotton fabrics caused by the introduction of cyclic polysiloxane into P/N organic coatings. NEW J CHEM 2021. [DOI: 10.1039/d1nj01976g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic polysiloxane was introduced into P/N flame retardant coating to prepare Si/P/N synergistic FRs (ASPP-Si), which can improve the heat release and smoke release of cotton fabric and enhance the tensile strength of fiber.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Chemistry and Chemical Engineering, College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Shuai Wang
- College of Chemistry and Chemical Engineering, College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Chaohong Dong
- College of Chemistry and Chemical Engineering, College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Jian Liu
- College of Chemistry and Chemical Engineering, College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Dezheng Kong
- College of Chemistry and Chemical Engineering, College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Heng Sun
- College of Chemistry and Chemical Engineering, College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Zhou Lu
- College of Chemistry and Chemical Engineering, College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|