1
|
Cheng Y, Wu Y, Peng C, Yang Y, Xuan L, Wang L, Wang Y, Xu A, Liu Y. Insights on aggregation-algae consortium based removal of sulfamethoxazole: Unraveling removal effect, enhanced method and toxicological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122512. [PMID: 39278014 DOI: 10.1016/j.jenvman.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The escalating occurrence of the antibiotic Sulfamethoxazole (SMX) in the environment presents a significant global threat to ecological systems and human health. Despite the growing interest in using microalgae for antibiotic biodegradation, strategies to enhance SMX elimination remain underexplored. In this study, we isolated a novel aggregation-algae consortium (AAC) from a municipal wastewater treatment plant (WWTP) and examined its potential for SMX removal, optimized culture conditions, SMX metabolite fate and the physicochemical impact on microalgal cells. The findings revealed that the AAC demonstrated remarkable resistance to SMX, even at concentrations as high as 10 mg/L, and could degrade SMX via free radical reactions. Although ion repulsion limited the biodegradation of AAC, the addition of peptone and yeast extract resulted in a significant enhancement, increased by 16.71%, 39.12% and 46.77% of three SMX groups. Moreover, AAC exhibited exceptional adaptability in real wastewater, achieving removal of 87.05%, 97.39% and 20.80% for total dissolved nitrogen, total dissolved phosphorus and SMX, respectively. The decreased degradation toxicity of SMX following AAC treatment was further validated by ECOSAR software and in vitro tests using Caenorhabditis elegans. This study advanced our understanding of SMX biodegradation and provided a novel approach for treating wastewater contaminated with SMX.
Collapse
Affiliation(s)
- Yongtao Cheng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuanyuan Wu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chuanyue Peng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yang Yang
- Anhui Shunyu Water Co., Ltd, Hefei, Anhui, 231100, PR China
| | - Liang Xuan
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - Lin Wang
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - Yan Wang
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
2
|
Ranucci E, Treccani S, Ferruti P, Alongi J. The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines. Polymers (Basel) 2024; 16:1744. [PMID: 38932092 PMCID: PMC11207469 DOI: 10.3390/polym16121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N'-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were incubated in polyamidoamine water solutions with concentrations ranging from 0.156 to 2.5 mg mL-1 at 25 ± 1 °C for 120 h. The seed germination percentage (SG%), an indicator of acute toxicity, and both root and shoot elongation, related to plant maturation, were the considered endpoints. The germination index (GI) was calculated as the product of relative seed germination times relative radical growth. The SG% values were in all cases comparable to those obtained in water, indicating no detectable acute phytotoxicity of the polyamidoamines. In the short term, the predominantly positively charged M-ARG proved to be phytotoxic at all concentrations (GI < 0.8), whereas the predominantly negatively charged M-GLU proved to be biostimulating at intermediate concentrations (GI > 1) and slightly inhibitory at 2.5 mg mL-1 (0.8 < GI < 1). Overall, polyamidoamine phytotoxicity could be correlated to charge distribution, demonstrating the potential of the test for predicting and interpreting the eco-toxicological behavior of water-soluble polyelectrolytes.
Collapse
Affiliation(s)
| | | | | | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (E.R.); (S.T.); (P.F.)
| |
Collapse
|
3
|
Nan Y, Zhu N, Sun S, Lei T, Guo X, Leng F, Yang M, Chen J, Wang Y. Degradation of petroleum hydrocarbon contaminants by Rhodococcus erythropolis KB1 synergistic with alfalfa (Medicago sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35332-35352. [PMID: 38727971 DOI: 10.1007/s11356-024-33227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024]
Abstract
Petroleum hydrocarbons are a stubborn pollutant that is difficult to degrade globally, and plant-microbial degradation is the main way to solve this type of pollutant. In this study, the physiological and ecological responses of alfalfa to petroleum hydrocarbons in different concentrations of petroleum hydrocarbon-contaminated soil with KB1 (Rhodococcus erythropolis) were analyzed and determined by laboratory potting techniques. The growth of alfalfa (CK) and alfalfa with KB1 (JZ) in different concentrations of petroleum hydrocarbons contaminated soil was compared and analyzed. The results of the CK group showed that petroleum hydrocarbons could significantly affect the activity of alfalfa antioxidant enzyme system, inhibit the development of alfalfa roots and the normal growth of plants, especially in the high-concentration group. KB1 strain had the ability to produce IAA, form biofilm, fix nitrogen, produce betaine and ACC deaminase, and the addition of KB1 could improve the growth traits of alfalfa in the soil contaminated with different concentrations of petroleum hydrocarbons, the content of soluble sugars in roots, and the stress resistance and antioxidant enzyme activities of alfalfa. In addition, the degradation kinetics of the strain showed that the degradation rate of petroleum could reach 75.2% after soaking with KB1. Furthermore, KB1 can efficiently degrade petroleum hydrocarbons in advance and significantly alleviate the damage of high concentration of petroleum hydrocarbons to plant roots. The results showed that KB1 strains and alfalfa plants could effectively enhance the degradation of petroleum hydrocarbons, which provided new ideas for improving bioremediation strategies.
Collapse
Affiliation(s)
- Yan Nan
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shangchen Sun
- Lanzhou Resources & Environment Voc-Tech University, Lanzhou, 730050, China
| | - Tianzhu Lei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730050, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China.
| |
Collapse
|
4
|
Boosted chloramphenicol mineralization and detoxification of UV/S(IV) processes with straightforward aeration: The critical contribution of post-reoxygenation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Pifferi V, Ferrari E, Manfredi A, Ferruti P, Alongi J, Ranucci E, Falciola L. Nanosponges by the oxo-Michael polyaddition of cyclodextrins as sorbents of water pollutants: the o-toluidine case. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6592-6603. [PMID: 36001264 PMCID: PMC9894998 DOI: 10.1007/s11356-022-22501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Hydrophilic cyclodextrin nanosponges were prepared by the oxo-Michael polyaddition in an aqueous solution at pH > 10 of α-, β-, and γ-cyclodextrin with 1,4-bisacryloylpiperazine or 2,2-bisacrylamidoacetic acid. These nanosponges and, for comparison purposes, their precursor cyclodextrins were tested as sorbents of o-toluidine, a carcinogenic wastewater contaminant, by monitoring the depletion of o-toluidine from a 10-4 M (10 ppm) aqueous solutions. To this aim, an innovative analytical procedure was used: The voltammetric peak currents of o-toluidine in linear sweep voltammetry experiments were registered using multi-walled carbon nanotubes-modified glassy carbon electrodes. The experimental sorption curves fitted a mono-exponential kinetic model, and the residual o-toluidine was 0.16 ppm, one order of magnitude lower than those of all other sorbents reported so far. The sorption capacities ranged from 88 to 199 µmol g-1 (10-21.3 mg g-1), equal to or higher than those of the parent cyclodextrins. All nanosponges were completely regenerated by extracting with methanol. After regeneration, the sorption capacity slightly improved, suggesting a rearrangement of the nanosponge network. Overall, it may be reasonably concluded that the cyclodextrin nanosponges reported in this paper warrant potential as o-toluidine exhaustive sorbents.
Collapse
Affiliation(s)
- Valentina Pifferi
- Dipartimento Di Chimica, Università Degli Studi Di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Elena Ferrari
- Dipartimento Di Chimica, Università Degli Studi Di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Amedea Manfredi
- Dipartimento Di Chimica, Università Degli Studi Di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Paolo Ferruti
- Dipartimento Di Chimica, Università Degli Studi Di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Jenny Alongi
- Dipartimento Di Chimica, Università Degli Studi Di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Elisabetta Ranucci
- Dipartimento Di Chimica, Università Degli Studi Di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Luigi Falciola
- Dipartimento Di Chimica, Università Degli Studi Di Milano, via C. Golgi 19, 20133, Milano, Italy.
| |
Collapse
|