1
|
Zhang T, Liu Y. Preparation of High-Transparency Phosphenanthrene-Based Flame Retardants and Studies of Their Flame-Retardant Properties. Polymers (Basel) 2023; 15:4665. [PMID: 38139917 PMCID: PMC10747229 DOI: 10.3390/polym15244665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Transparency is an important property for polymer flame retardants, especially epoxy resin (EP) flame retardants, and flame-retardant epoxy resins that maintain a high transparency and low chromatic aberration play important roles in the optical, lighting, and energy industries. Herein, a DOPO-based flame retardant 6,6'-((sulfonylbis(4,1-phenylene))bis(oxy))bis(dibenzo[c,e][1,2]oxaphosphinine 6-oxide) with a high transparency and low chromatic aberration was prepared via the classical Atherton-Todd reaction and named SBPDOPO. Its chemical structure was characterized with Fourier IR spectroscopy and NMR spectroscopy. An EP loaded with 7 wt% SBPDOPO passed the UL-94 V-0 rating with an LOI value of 32.1%, and the peak heat release rate, total heat release, and total smoke production were reduced by 34.1%, 31.6%, and 27.7%, respectively, compared with those of pure EP. In addition, the addition of SBPDOPO improved the thermal stability, residual mass, and glass transition temperature of the EP. On this basis, the EP containing 7 wt% SBPDOPO maintained a high transparency and low color aberration, with a transmittance of 94% relative to that of pure EP and a color aberration ΔE of 1.63. Finally, the flame-retardant mechanism of SBPDOPO was analyzed, which demonstrated that it exerted both gas-phase and condensed-phase flame-retardant effects, and that SBPDOPO/EP had high potential for application scenarios in which both flame retardancy and transparency are needed. SBPDOPO/EP has great potential for applications requiring both flame retardancy and transparency.
Collapse
Affiliation(s)
- Tao Zhang
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Yong Liu
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
- Work Safety Key Laboratory on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Zou Y, Cui W, Chen D, Luo F, Li H. In Situ-Generated Heat-Resistant Hydrogen-Bonded Organic Framework for Remarkably Improving Both Flame Retardancy and Mechanical Properties of Epoxy Composites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47463-47474. [PMID: 37750712 DOI: 10.1021/acsami.3c09197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In this study, the heat-resistant hydrogen-bonded organic framework (HOF) material HOF-FJU-1 was synthesized via in situ generation and then used as flame retardants (FRs) to improve the flame retardancy of epoxy resin (EP). HOF-FJU-1 can maintain high crystallinity at 450 °C and thus function as a flame retardant in EP. The study found that HOF-FJU-1 facilitates the improvement of char formation in EP, thus inhibiting heat transfer and smoke release during combustion. For EP/HOF-FJU-1 composites, the in situ-generated HOF-FJU-1 can remarkably improve both the mechanical properties and the flame retardancy of EP. Furthermore, the in situ-generated HOF-FJU-1 has better fire safety than the ex situ-generated HOF-FJU-1 at the same filling content. Thermal degradation products and flame retardation mechanisms in the gas and condensed phases were further investigated. This work demonstrates that the in situ-generated HOF-FJU-1 is promising to be an excellent flame-retardant candidate.
Collapse
Affiliation(s)
- Yingbing Zou
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Wenqi Cui
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Denglong Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou 362801, China
| | - Fubin Luo
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Hongzhou Li
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
3
|
Xu H, Peng C, Xia L, Miao Z, He S, Chi C, Luo W, Chen G, Zeng B, Wang S, Dai L. A Novel Anderson-Type POMs-Based Hybrids Flame Retardant for Reducing Smoke Release and Toxicity of Epoxy Resins. Macromol Rapid Commun 2023; 44:e2300162. [PMID: 37114515 DOI: 10.1002/marc.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Smoke emission and smoke toxicity have drawn more attention to improving the fire safety of polymers. In this work, a polyoxometalates (POMs)-based hybrids flame retardant (P-AlMo6 ) epoxy resin (EP) is prepared with toxicity-reduction and smoke-suppression properties via a peptide coupling reaction between POMs and organic molecules with double DOPO (bisDOPA). It combines the good compatibility of the organic molecule and the superior catalytic performance of POMs. Compared to pure EP, the glass transition temperature and flexural modulus of EP composite with 5 wt.% P-AlMo6 (EP/P-AlMo6 -5) are raised by 12.3 °C and 57.75%, respectively. Notably, at low flame-retardant addition, the average CO to CO2 ratio (Av-COY/Av-CO2 Y) is reduced by 33.75%. Total heat release (THR) and total smoke production (TSP) are lowered by 44.4% and 53.7%, respectively. The Limited Oxygen Index (LOI) value achieved 31.7% and obtained UL-94 V-0 rating. SEM, Raman, X-ray photoelectron spectroscopy, and TG-FTIR are applied to analyze the flame-retardant mechanism in condensed and gas phase. Outstanding flame retardant, low smoke toxicity properties are attained due to the catalytic carbonization ability of metal oxides Al2 O3 and MoO3 produced from the breakdown of POMs. This work advances the development of POMs-based hybrids flame retardants with low smoke toxicity properties.
Collapse
Affiliation(s)
- Hui Xu
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaohua Peng
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Long Xia
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhongxi Miao
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Siyuan He
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Cheng Chi
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Weiang Luo
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Guorong Chen
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Birong Zeng
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuchuan Wang
- Institution of Research and Development, T&H Novel Materials Co., Ltd, Quanzhou, 362000, P. R. China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Xiamen Key Laboratory of Fire-Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
4
|
He S, Chi C, Peng C, Zeng B, Chen Y, Miao Z, Xu H, Luo W, Chen G, Fu Z, Dai L. A Novel P/N/Si-Containing Vanillin-Based Compound for a Flame-Retardant, Tough Yet Strong Epoxy Thermoset. Polymers (Basel) 2023; 15:polym15102384. [PMID: 37242961 DOI: 10.3390/polym15102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
It is still extremely challenging to endow epoxy resins (EPs) with excellent flame retardancy and high toughness. In this work, we propose a facile strategy of combining rigid-flexible groups, promoting groups and polar phosphorus groups with the vanillin compound, which implements a dual functional modification for EPs. With only 0.22% phosphorus loading, the modified EPs obtain a limiting oxygen index (LOI) value of 31.5% and reach V-0 grade in UL-94 vertical burning tests. Particularly, the introduction of P/N/Si-containing vanillin-based flame retardant (DPBSi) improves the mechanical properties of EPs, including toughness and strength. Compared with EPs, the storage modulus and impact strength of EP composites can increase by 61.1% and 240%, respectively. Therefore, this work introduces a novel molecular design strategy for constructing an epoxy system with high-efficiency fire safety and excellent mechanical properties, giving it immense potential for broadening the application fields of EPs.
Collapse
Affiliation(s)
- Siyuan He
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Cheng Chi
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Chaohua Peng
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Birong Zeng
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yongming Chen
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhongxi Miao
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hui Xu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Weiang Luo
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Guorong Chen
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhenping Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Xu SD, Gu S, Pu XL, Xiao YF, Lu JH, Wang YZ, Chen L. In situ phase separation of novel phosphorus-containing polyester in epoxy resins towards simultaneously improved thermal conductivity and fire safety. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|