1
|
Liu L, He L, Jin L, Shi H, Ye S, He L, Wang W, Guo W. Phosphorylated chitosan@MXene biomass-based coating with high flame retardancy and environmental friendliness for cotton fabric. Int J Biol Macromol 2025; 301:140344. [PMID: 39889990 DOI: 10.1016/j.ijbiomac.2025.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/21/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
To obtain cotton fabrics with high-efficiency flame retardancy, a novel nanohybrid MXene modified with phosphorylated chitosan (CS) was successfully prepared through a simple chemical modification strategy. It was subsequently employed in the fabrication of PC@T-MXene-functionalized cotton fabric (PC@T-MXene-C) through an impregnation process. The thermal stability and flame retardancy of the pure and treated cotton textiles were analyzed via TGA, LOI, VBT flammability tests and cone calorimetry. Compared with those of the original cotton textile and PCS-decorated cotton fabric (PC-C), the thermal and flame-retardant performance of PC@T-MXene-C was significantly enhanced. When the weight gain of the treated cotton fabric was 12 % (PC@T-MXene-C3), the LOI of PC@T-MXene-C3 significantly reached 35 %, and the peak heat release rate (PHRR) and total heat release (THR) decreased by 80.7 % and 43.7 %, respectively, compared with those of the original cotton textile. Additionally, PC@T-MXene-C3 retained 39.1 % of the char residual at high temperature under a nitrogen atmosphere in the TGA analysis. This eco-friendly biomass-based flame-retardant coating provides a new strategy for fabricating green flame-retardant systems without the use of hazardous compounds.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lei He
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liping Jin
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Haojie Shi
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shuhan Ye
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lingxin He
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Wenwen Guo
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Deng S, Wang F, Wang M, Wu N, Cui H, Wu Y. Integrating multifunctional highly efficient flame-retardant coatings with superhydrophobicity, antibacterial property on cotton fabric. Int J Biol Macromol 2023; 253:127022. [PMID: 37751821 DOI: 10.1016/j.ijbiomac.2023.127022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
There has been a growing interest in bio-based flame-retardant coating layer with good antibacterial activity for cotton fabric owing to the arising environmental pollution and viral and bacterial infectious risks. In this study, multifunctional flame-retardant coatings with superhydrophobicity and antibacterial property were integrated on cotton fabric through two-step method. The first layer of phosphorylated chitosan (PCS) biobased coating (C4) endowed the fabric highly efficient flame retardancy and antibacterial activity, and the second layer of modified poly(2-hydroxyethyl methacrylate phosphate ester) (PHEMAP) coating by perfluorooctyltriethoxysilane (P/F) provided the fabric excellent superhydrophobicity and self-cleaning ability. The C4-P/F fabric exhibited a shorter damage length of only 6.2 cm and achieved a higher char yield of 22.3 % than the C4 fabric in the vertical combustion test, and the limited oxygen index of the C4-P/F fabric increased to 32.5 %. The water contact angle (WCA) of the C4-P/F fabric reached above 150 o. Moreover, the C4-P/F fabric exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. The highly efficient flame-retardant, superhydrophobic, antibacterial fabric is promising in home and public decoration, fire protection fields.
Collapse
Affiliation(s)
- Shanshan Deng
- Key Laboratory of Rubber-Plastics, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Fei Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Mohan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Ningjing Wu
- Key Laboratory of Rubber-Plastics, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China.
| | - Hongli Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Yanan Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
3
|
Jin WJ, Xin Y, Guan JP, Cheng XW, Zhu MK, Wang D. Fabrication of multifunctional bio-macromolecule organic-inorganic hybrid system for protein silk: Photochromic, UV protection, fire-proof and super durability. Int J Biol Macromol 2023; 253:127296. [PMID: 37813211 DOI: 10.1016/j.ijbiomac.2023.127296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Nowadays, high value-added and multifunctional textiles have attracted widespread attention due to the changing demands of modern life. This study focused on the fabrication of silk with photochromism, flame retardancy, UV resistance and durability using riboflavin sodium phosphate (RSP) and various metal ions (Fe2+, Fe3+, Al3+, and Ti4+). Attractively, the photochromic performance was one of the most distinctive features of the modified silk, and the yellow silk fabric turned into fluorescent green under UV lamp. After a detailed comparison, it was determined that RSP/Fe3+ hybrid system was most effective in improving anti-UV performance of the silk with a high UPF of 25.8, achieving a "Good" level of UV protection. Specifically, it achieved a B1 fire protection with a low damaged-length of 9.4 cm and a high LOI of 28.3 %. Additionally, the modified silk showed the lowest smoke density, reducing by approximately 84.1 % versus that of pristine silk. Moreover, the modified silk was able to meet the B1 classification and the "Good" UV protection requirements even after 75 washing cycles, making it more durable than most functional textiles reported. The further analysis indicated that RSP and metal ions can synergistically enhance the condensed-phase action, thereby improving the fire resistance of silk.
Collapse
Affiliation(s)
- Wen-Jie Jin
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yu Xin
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jin-Ping Guan
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Xian-Wei Cheng
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Meng-Kai Zhu
- Central Research Institute, Zhejiang Hailide New material Co., Ltd., 18 Xinmi Road, Jiaxing 314400, China
| | - Dong Wang
- Central Research Institute, Zhejiang Hailide New material Co., Ltd., 18 Xinmi Road, Jiaxing 314400, China
| |
Collapse
|
4
|
El-Tantawy AI, Elmongy EI, Elsaeed SM, Abdel Aleem AAH, Binsuwaidan R, Eisa WH, Salman AU, Elharony NE, Attia NF. Synthesis, Characterization, and Docking Study of Novel Thioureidophosphonate-Incorporated Silver Nanocomposites as Potent Antibacterial Agents. Pharmaceutics 2023; 15:1666. [PMID: 37376114 DOI: 10.3390/pharmaceutics15061666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Newly synthesized mono- and bis-thioureidophosphonate (MTP and BTP) analogues in eco-friendly conditions were employed as reducing/capping cores for 100, 500, and 1000 mg L-1 of silver nitrate. The physicochemical properties of silver nanocomposites (MTP(BTP)/Ag NCs) were fully elucidated using spectroscopic and microscopic tools. The antibacterial activity of the nanocomposites was screened against six multidrug-resistant pathogenic strains, comparable to ampicillin and ciprofloxacin commercial drugs. The antibacterial performance of BTP was more substantial than MTP, notably with the best minimum inhibitory concentration (MIC) of 0.0781 mg/mL towards Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa. Among all, BTP provided the clearest zone of inhibition (ZOI) of 35 ± 1.00 mm against Salmonella typhi. After the dispersion of silver nanoparticles (AgNPs), MTP/Ag NCs offered dose-dependently distinct advantages over the same nanoparticle with BTP; a more noteworthy decline by 4098 × MIC to 0.1525 × 10-3 mg/mL was recorded for MTP/Ag-1000 against Pseudomonas aeruginosa over BTP/Ag-1000. Towards methicillin-resistant Staphylococcus aureus (MRSA), the as-prepared MTP(BTP)/Ag-1000 displayed superior bactericidal ability in 8 h. Because of the anionic surface of MTP(BTP)/Ag-1000, they could effectively resist MRSA (ATCC-43300) attachment, achieving higher antifouling rates of 42.2 and 34.4% at most optimum dose (5 mg/mL), respectively. The tunable surface work function between MTP and AgNPs promoted the antibiofilm activity of MTP/Ag-1000 by 1.7 fold over BTP/Ag-1000. Lastly, the molecular docking studies affirmed the eminent binding affinity of BTP over MTP-besides the improved binding energy of MTP/Ag NC by 37.8%-towards B. subtilis-2FQT protein. Overall, this study indicates the immense potential of TP/Ag NCs as promising nanoscale antibacterial candidates.
Collapse
Affiliation(s)
- Ahmed I El-Tantawy
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Shimaa M Elsaeed
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael H Eisa
- Spectroscopy Department, Physics Division, National Research Centre (NRC), Cairo 12622, Egypt
| | - Ayah Usama Salman
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Noura Elsayed Elharony
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| |
Collapse
|
5
|
Sfameni S, Rando G, Plutino MR. Sustainable Secondary-Raw Materials, Natural Substances and Eco-Friendly Nanomaterial-Based Approaches for Improved Surface Performances: An Overview of What They Are and How They Work. Int J Mol Sci 2023; 24:ijms24065472. [PMID: 36982545 PMCID: PMC10049648 DOI: 10.3390/ijms24065472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
To meet modern society’s requirements for sustainability and environmental protection, innovative and smart surface coatings are continually being developed to improve or impart surface functional qualities and protective features. These needs regard numerous different sectors, such as cultural heritage, building, naval, automotive, environmental remediation and textiles. In this regard, researchers and nanotechnology are therefore mostly devoted to the development of new and smart nanostructured finishings and coatings featuring different implemented properties, such as anti-vegetative or antibacterial, hydrophobic, anti-stain, fire retardant, controlled release of drugs, detection of molecules and mechanical resistance. A variety of chemical synthesis techniques are usually employed to obtain novel nanostructured materials based on the use of an appropriate polymeric matrix in combination with either functional doping molecules or blended polymers, as well as multicomponent functional precursors and nanofillers. Further efforts are being made, as described in this review, to carry out green and eco-friendly synthetic protocols, such as sol–gel synthesis, starting from bio-based, natural or waste substances, in order to produce more sustainable (multi)functional hybrid or nanocomposite coatings, with a focus on their life cycle in accordance with the circular economy principles.
Collapse
Affiliation(s)
- Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765713
| |
Collapse
|
6
|
Attia NF, Elashery SEA, Abd-Ellah M. Sustainable Textile Fabric Coatings: From Materials to Applications. COATINGS 2023; 13:336. [DOI: 10.3390/coatings13020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In order to meet the technical requirements, it is necessary to infuse new functions into textile fabrics due to the rapid advancement in the exploitation of textile-based materials in various industrial applications [...]
Collapse
Affiliation(s)
- Nour F. Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt
- Industrial Engineering Department, Faculty of Engineering and Applied Science, Nile University, Giza 3247010, Egypt
| | - Sally E. A. Elashery
- Chemistry Department, Faculty of Science, Cairo University, Gamaa Str., Giza 12613, Egypt
| | - Marwa Abd-Ellah
- Department of Chemistry, College of Art and Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
7
|
Attia NF, Mohamed A, Hussein A, El-Demerdash AGM, Kandil SH. Greener bio-based spherical nanoparticles for efficient multilayer textile fabrics nanocoating with outstanding fire retardancy, toxic gases suppression, reinforcement and antibacterial properties. SURFACES AND INTERFACES 2023; 36:102595. [DOI: 10.1016/j.surfin.2022.102595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
8
|
Nam S, Hillyer MB, He Z, Chang S, Edwards JV. Self-induced transformation of raw cotton to a nanostructured primary cell wall for a renewable antimicrobial surface. NANOSCALE ADVANCES 2022; 4:5404-5416. [PMID: 36540117 PMCID: PMC9724696 DOI: 10.1039/d2na00665k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Herein, raw cotton is shown to undergo self-induced transformation into a nanostructured primary cell wall. This process generates a metal nanoparticle-mediated antimicrobial surface that is regenerable through multiple washings. Raw cotton, without being scoured and bleached, contains noncellulosic constituents including pectin, sugars, and hemicellulose in its primary cell wall. These noncellulosic components provide definitive active binding sites for the in situ synthesis of silver nanoparticles (Ag NPs). Facile heating in an aqueous solution of AgNO3 activated raw cotton to produce Ag NPs (ca. 28 nm in diameter and 2261 mg kg-1 in concentration). Compared with scoured and bleached cotton, raw cotton requires lower concentrations of AgNO3-ten times lower for Klebsiella pneumonia and two times lower for Staphylococcus aureus-to achieve 99.9% reductions of both Gram-positive and Gram-negative bacteria. The Ag NPs embedded in the primary cell wall, which was confirmed via transmission electron microscopy images of the fiber cross-sections, are immobilized, exhibiting resistance to leaching as judged by continuous laundering. A remarkable percentage (74%) of the total Ag NPs remained in the raw cotton after 50 laundering cycles.
Collapse
Affiliation(s)
- Sunghyun Nam
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - Matthew B Hillyer
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - Zhongqi He
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - SeChin Chang
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| | - J Vincent Edwards
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center New Orleans LA 70124 USA +1 504 286 4390 +1 504 286 4229
| |
Collapse
|