1
|
Affiliation(s)
- Zhe Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Wen‐Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
2
|
Machale J, Majumder SK, Ghosh P, Sen TK. Role of chemical additives and their rheological properties in enhanced oil recovery. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
A significant amount of oil (i.e. 60–70%) remains trapped in reservoirs after the conventional primary and secondary methods of oil recovery. Enhanced oil recovery (EOR) methods are therefore necessary to recover the major fraction of unrecovered trapped oil from reservoirs to meet the present-day energy demands. The chemical EOR method is one of the promising methods where various chemical additives, such as alkalis, surfactants, polymer, and the combination of all alkali–surfactant–polymer (ASP) or surfactant–polymer (SP) solutions, are injected into the reservoir to improve the displacement and sweep efficiency. Every oil field has different conditions, which imposes new challenges toward alternative but more effective EOR techniques. Among such attractive alternative additives are polymeric surfactants, natural surfactants, nanoparticles, and self-assembled polymer systems for EOR. In this paper, water-soluble chemical additives such as alkalis, surfactants, polymer, and ASP or SP solution for chemical EOR are highlighted. This review also discusses the concepts and techniques related to the chemical methods of EOR, and highlights the rheological properties of the chemicals involved in the efficiency of EOR methods.
Collapse
Affiliation(s)
- Jinesh Machale
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039, Assam , India
| | - Subrata Kumar Majumder
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039, Assam , India
| | - Pallab Ghosh
- Department of Chemical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039, Assam , India
| | - Tushar Kanti Sen
- Department of Chemical Engineering , Curtin University , GPO Box U1987 , Perth, WA 6845 , Australia
| |
Collapse
|
3
|
Umapathi R, Reddy PM, Rani A, Venkatesu P. Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(N-isopropylacrylamide). Phys Chem Chem Phys 2018; 20:9717-9744. [DOI: 10.1039/c7cp08172c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermoresponsive polymers (TRPs) in different solvent media have been studied over a long period and are important from both scientific and technical points of view.
Collapse
Affiliation(s)
| | - P. Madhusudhana Reddy
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
- Department of Chemical Engineering
| | - Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | | |
Collapse
|
4
|
Chen J, Wang T, Liu M. Chaperone gelator for the chiral self-assembly of all proteinogenic amino acids and their enantiomers. Chem Commun (Camb) 2016; 52:6123-6. [DOI: 10.1039/c6cc01651k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concept of a chaperone gelator that can assist non-gelator molecules to form gels is proposed.
Collapse
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Tianyu Wang
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Minghua Liu
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
5
|
Preparation of a drug carrier through α-cyclodextrin-induced micellization of poly(ε-caprolactone-block-4-vinylpyridine) for controlled delivery of doxorubicin. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0842-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Yang H, Zhang C, Li C, Liu Y, An Y, Ma R, Shi L. Glucose-responsive polymer vesicles templated by α-CD/PEG inclusion complex. Biomacromolecules 2015; 16:1372-81. [PMID: 25803265 DOI: 10.1021/acs.biomac.5b00155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polymeric nanoparticles with glucose-responsiveness are of great interest in developing a self-regulated drug delivery system. In this work, glucose-responsive polymer vesicles were fabricated based on the complexation between a glucosamine (GA)-containing block copolymer PEG45-b-P(Asp-co-AspGA) and a phenylboronic acid (PBA)-containing block copolymer PEG114-b-P(Asp-co-AspPBA) with α-CD/PEG45 inclusion complex as the sacrificial template. The obtained polymer vesicles composed of cross-linked P(Asp-co-AspGA)/P(Asp-co-AspPBA) layer as wall and PEG chains as both inner and outer coronas. The vesicular morphology was observed by transmission electron microscopy (TEM), and the glucose-responsiveness was investigated by monitoring the variations of hydrodynamic diameter (Dh) and light scattering intensity (LSI) in the polymer vesicle solution with glucose using dynamic light scattering (DLS). Vancomycin as a model drug was encapsulated in the polymer vesicles and sugar-triggered drug release was carried out. This kind of polymer vesicle may be a promising candidate for glucose-responsive drug delivery.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chang Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
de la Rosa VR, Hoogenboom R. Solution Polymeric Optical Temperature Sensors with Long-Term Memory Function Powered by Supramolecular Chemistry. Chemistry 2014; 21:1302-11. [DOI: 10.1002/chem.201405161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 12/12/2022]
|
8
|
pH-responsive pseudorotaxane between comblike PEO-grafted triblock polymer and α-cyclodextrin. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3265-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Jin Q, Liu G, Ji J. Supramolecular Micelles and Reverse Micelles Based on Cyclodextrin Polyrotaxanes. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 2013; 65:1215-33. [PMID: 23673149 PMCID: PMC3885994 DOI: 10.1016/j.addr.2013.05.001] [Citation(s) in RCA: 597] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 04/28/2013] [Accepted: 05/03/2013] [Indexed: 12/25/2022]
Abstract
The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed.
Collapse
Affiliation(s)
- Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Han GJ, Dong XY, Sun Y. Purification effect of artificial chaperone in the refolding of recombinant ribonuclease A from inclusion bodies. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Yuen F, Tam KC. α-cyclodextrin assisted self-assembly of poly(ethylene glycol)-block-poly(N-isopropylacrylamide) in aqueous media. J Appl Polym Sci 2012. [DOI: 10.1002/app.38072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Fülöp Z, Kurkov S, Nielsen T, Larsen K, Loftsson T. Self-assembly of cyclodextrins: formation of cyclodextrin polymer based nanoparticles. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50032-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhang J, Ma PX. Core-shell structured nanoassemblies based on β-cyclodextrin containing block copolymer and poly(β-benzyl L-aspartate) via host-guest complexation. POLYMER 2011; 52:4928-4937. [PMID: 22046058 PMCID: PMC3201716 DOI: 10.1016/j.polymer.2011.08.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double hydrophilic copolymers (PEG-b-PCDs) with one PEG block and another block containing β-cyclodextrin (β-CD) units were synthesized by macromolecular substitution reaction. Via a dialysis procedure, complex assemblies with a core-shell structure were prepared using PEG-b-PCDs in the presence of a hydrophobic homopolymer poly(β-benzyl L-aspartate) (PBLA). The hydrophobic PBLA resided preferably in the cores of assemblies, while the extending PEG chains acted as the outer shell. Host-guest interaction between β-CD and hydrophobic benzyl group was found to mediate the formation of the assemblies, where PEG-b-PCD and PBLA served as the host and guest macromolecules, respectively. The particle size of the assemblies could be modulated by the composition of the host PEG-b-PCD copolymer. The molecular weight of the guest polymer also had a significant effect on the size of the assemblies. The assemblies prepared from the host and guest polymer pair were stable during a long-term storage. These assemblies could also be successfully reconstituted after freeze-drying. The assemblies may therefore be used as novel nanocarriers for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Jianxiang Zhang
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Choi MJ, Ruktanonchai U, Soottitantawat A, Min SG. Morphological characterization of encapsulated fish oil with β-cyclodextrin and polycaprolactone. Food Res Int 2009. [DOI: 10.1016/j.foodres.2009.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Zhou Z, Xu J, Liu X, Li X, Li S, Yang K, Wang X, Liu M, Zhang Q. Non-spherical racemic polylactide microarchitectures formation via solvent evaporation method. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.05.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Wang H, Chai L, Hu A, Lü C, Li B. Self-assembly microstructures of amphiphilic polyborate in aqueous solutions. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|