1
|
Xiong H, Zhang P, Wang D, Zhou Z, Sun J, Diao M. A silk-based hydrogel containing dexamethasone and lipoic acid microcrystals for local delivery to the inner ear. Colloids Surf B Biointerfaces 2024; 237:113855. [PMID: 38513298 DOI: 10.1016/j.colsurfb.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Local drug delivery has been exploited recently to treat hearing loss, as this method can both bypass the blood-labyrinth barrier and provide sustained drug release. Combined drug microcrystals (MCs) offer additional advantages for sensorineural hearing loss treatment via intratympanic (IT) injection due to their shape effect and combination strategy. In this study, to endow viscous effects of hydrogels, nonspherical dexamethasone (DEX) and lipoic acid (LA) MCs were incorporated into silk fibroin (SF) hydrogels, which were subsequently administered to the tympanic cavity to investigate their pharmaceutical properties. First, we prepared DEX and LA MCs by a traditional precipitation technique followed by SF hydrogel incorporation (SF+DEX+LA). After characterization of the physicochemical features, including morphology, rheology, and dissolution, both a suspension of combined DEX and LA MCs (DEX+LA) and SF+DEX+LA were administered to guinea pigs by IT injection, after which the pharmacokinetics, biodegradation and biocompatibility were evaluated. To our surprise, compared to the DEX+LA group, the pharmacokinetics of the SF+DEX+LA hydrogel group did not improve significantly, which may be ascribed to their nonspherical shape and deposition effects of the drugs MCs. The cochlear tissue in each group displayed good morphology, with no obvious inflammatory reactions. This combined MC suspension has the clear advantages of no vehicle, easy scale-up preparation, and good biocompatibility and outcomes, which paves the way for practical treatment of hearing loss via local drug delivery.
Collapse
Affiliation(s)
- Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Dongcheng Wang
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China.
| |
Collapse
|
2
|
Xiao W, He K, Yu C, Zhou Z, Xia L, Xie S, Li H, Zhang M, Zhang Z, Luo P, Wen L, Chen G. Space Station-like Composite Nanoparticles for Co-Delivery of Multiple Natural Compounds from Chinese Medicine and Hydrogen in Combating Sensorineural Hearing Loss. Mol Pharm 2023; 20:3987-4006. [PMID: 37503854 DOI: 10.1021/acs.molpharmaceut.3c00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ototoxic drugs such as aminoglycoside antibiotics and cisplatin (CDDP) can cause sensorineural hearing loss (SNHL), which is closely related to oxidative stress and the acidification of the inner ear microenvironment. Effective treatment of SNHL often requires multifaceted approach due to the complex pathology, and drug combination therapy is expected to be at the forefront of modern hearing loss treatment. Here, space-station-like composite nanoparticles (CCC@mPP NPs) with pH/oxidation dual responsiveness and multidrug simultaneous delivery capability were constructed and then loaded with various drugs including panax notoginseng saponins (PNS), tanshinone IIA (TSIIA), and ammonia borane (AB) to provide robust protection against SNHL. Molecular dynamics simulation revealed that carboxymethyl chitosan/calcium carbonate-chitosan (CCC) NPs and monomethoxy poly(ethylene glycol)-PLGA (mPP) NPs can rendezvous and dock primarily by hydrogen bonding, and electrostatic forces may be involved. Moreover, CCC@mPP NPs crossed the round window membrane (RWM) and entered the inner ear through endocytosis and paracellular pathway. The docking state was basically maintained during this process, which created favorable conditions for multidrug delivery. This nanosystem was highly sensitive to pH and reactive oxygen species (ROS) changes, as evidenced by the restricted release of payload at alkaline condition (pH 7.4) without ROS, while significantly promoting the release in acidic condition (pH 5.0 and 6.0) with ROS. TSIIA/PNS/AB-loaded CCC@mPP NPs almost completely preserved the hair cells and remained the hearing threshold shift within normal limits in aminoglycoside- or CDDP-treated guinea pigs. Further experiments demonstrated that the protective mechanisms of TSIIA/PNS/AB-loaded CCC@mPP NPs involved direct and indirect scavenging of excessive ROS, and reduced release of pro-inflammatory cytokines. Both in vitro and in vivo experiments showed the high biocompatibility of the composite NPs, even after long-term administration. Collectively, this work suggests that composite NPs is an ideal multi-drug-delivery vehicle and open new avenues for inner ear disease therapies.
Collapse
Affiliation(s)
- Wenbin Xiao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kerui He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeming Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liye Xia
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shibao Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hanqi Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd., Zhongshan 528437, China
| | - Zhifeng Zhang
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang X, Xiong H, Zhang P, Liu Y, Gao C, Zhou Z, Sun J, Diao M. Intratympanic microcrystals of dexamethasone and lipoic acid for the treatment of cisplatin-induced inner ear injury. Colloids Surf B Biointerfaces 2023; 223:113191. [PMID: 36739674 DOI: 10.1016/j.colsurfb.2023.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Steroids (anti-inflammatory drugs) combined with antioxidants are frequently prescribed to treat cisplatin (CP)-induced hearing loss in the clinic. Compared to systemic administration of free drugs, local drug delivery systems offer better therapeutic qualities and patient compliance since they not only can bypass the blood-labyrinth barrier but also can perform sustained release. In this work, dexamethasone (DEX) and lipoic acid (LA) non-spherical microcrystals (MCs) were prepared without complicated chemical modification. Following a series of physical characterizations, including morphology, stability and injectability, dissolution and round window membrane distribution of MCs, DEX MCs, LA MCs and the simple mixture of DEX MCs + LA MCs (combination group) were administered in guinea pigs by intratympanic injection. We found that LA MCs enabled improvement of DEX absorption in the combination group compared to a single dose. In addition, no significant morphological changes or inflammatory responses were observed in cochlear tissue, indicating good biocompatibility. Finally, the combination group also demonstrated synergistic therapeutic effect for protecting hair cells against CP-induced damage. The local co delivery of DEX MCs and LA MCs offers a new strategy for the treatment of CP-induced inner ear injury since they provide sustained anti-inflammatory and antioxidant effects simultaneously.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ya Liu
- Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China
| | - Chang Gao
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China.
| |
Collapse
|
4
|
Zhang X, Zhu X, He Y, Zhang Y, Huang S, Yi X, Li Y, Hou Z, Fan Z. Biomimetic dual-responsive bioengineered nanotheranostics for intracellular cascade-synthesizing chemo-drugs and efficient oncotherapy. J Mater Chem B 2022; 11:119-130. [PMID: 36504220 DOI: 10.1039/d2tb01943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular-synthesized chemo-drugs based on the inherent characteristics of the tumor microenvironment (TME) have been extensively applied in oncotherapy. However, combining other therapeutic strategies to convert nontoxic small molecules into toxic small-molecule chemo-drugs in the TME is still a huge challenge. To address this issue, herein we have developed a biomimetic dual-responsive bioengineered nanotheranostics system via the supramolecular co-assembly of the nontoxic small-molecule 1,5-dihydroxynaphthalene (DHN) and small-molecule photosensitizer indocyanine green (ICG) followed by surface cloaking through red blood cell membranes (RBCs) for intracellular cascade-synthesizing chemo-drugs and efficient oncotherapy. Such nanotheranostics with a suitable diameter, core-shell structure, ultrahigh dual-drug payload rate, and excellent stability can efficiently accumulate in tumor regions and then internalize into tumor cells. Under the dual stimulations of near-infrared laser irradiation and acidic lysosomes, the nanotheranostics system exhibited exceptional instability under heat-primed membrane rupture and pH decrease, thereby achieving rapid disassembly and on-demand drug release. Furthermore, the released ICG can efficiently convert 3O2 into 1O2. After that, the generated 1O2 can efficiently oxidize the released nontoxic DHN into the highly toxic chemo-drug juglone, thereby realizing intracellular cascade-synthesizing chemo-drugs and synergistic photodynamic-chemotherapy while reducing detrimental side effects on normal cells or tissues. Overall, it is envisioned that RBC-cloaked nanotheranostics with intracellular cascade-synthesizing chemo-drugs can provide a promising strategy for intracellular chemo-drug synthesis-based oncotherapy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xinglin Zhu
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yuan He
- Department of Cardiothoracic Surgery, the Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, 363005, China
| | - Ying Zhang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| | - Shan Huang
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen, 361021, China.
| | - Xue Yi
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, 361021, China
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen, 361021, China.
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Zhongxiong Fan
- College of Materials, Xiamen University, Xiamen, 361005, China. .,Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
5
|
Jiang Z, Tang H, Xiong Q, Li M, Dai Y, Zhou Z. Placental cell translocation of folate-conjugated pullulan acetate non-spherical nanoparticles. Colloids Surf B Biointerfaces 2022; 216:112553. [PMID: 35598508 DOI: 10.1016/j.colsurfb.2022.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Due to the adverse effects of free drugs on the fetus, placental-mediated pregnancy complications still lack effective pharmacotherapy. This study aims to construct a non-spherical drug delivery system based on folate-conjugated pullulan acetate (FPA) for placental targeting and translocation. By adjusting the initial solvent system, FPA nanoparticles with different morphologies were prepared using dialysis method without a surfactant. Cytotoxicity and lactate dehydrogenase release assays indicated the good biocompatibility of FPA nanoparticles in BeWo b30 cells. Cellular uptake and in vitro placental barrier transportation studies showed that FPA nanoparticles entered the cells and transported across the cell monolayer, benefiting from the active target effect mediated by the folate receptor. Moreover, non-spherical FPA nanoparticles showed nuclear translocation due to their shape effect. These findings provide a novel aspect in placental-mediated pregnancy treatment and applications in the obstetrics field of drug use during pregnancy.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China.
| | - Qingqing Xiong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Li
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China
| | - Yinmei Dai
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China.
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China.
| |
Collapse
|
6
|
Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery. Colloids Surf B Biointerfaces 2021; 199:111560. [DOI: 10.1016/j.colsurfb.2021.111560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 01/24/2023]
|
7
|
Liu M, Feng D, Liang X, Li M, Yang J, Wang H, Pang L, Zhou Z, Yang Z, Kong D, Li C. Old Dog New Tricks: PLGA Microparticles as an Adjuvant for Insulin Peptide Fragment-Induced Immune Tolerance against Type 1 Diabetes. Mol Pharm 2020; 17:3513-3525. [PMID: 32787283 DOI: 10.1021/acs.molpharmaceut.0c00525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly[lactic-co-(glycolic acid)] (PLGA) is arguably one of the most versatile synthetic copolymers used for biomedical applications. In vivo delivery of multiple substances including cells, pharmaceutical compounds, and antigens has been achieved by using PLGA-based micro-/nanoparticles although, presently, the exact biological impact of PLGA particles on the immune system remains controversial. Type 1 diabetes (T1D) is one subtype of diabetes characterized by the attack of immune cells against self-insulin-producing pancreatic islet cells. Considering the autoimmune etiology of T1D and the recent use of PLGA particles for eliciting desired immune responses in various aspects of immunotherapy, for the present study, a combination of Ins29-23 peptide (a known autoantigen of T1D) and PLGA microparticles was selected for T1D prevention assessment in nonobese diabetic (NOD) mice, a well-known animal model with spontaneous development of T1D. Thus, inoculation of PLGA microparticles + Ins29-23 completely prevented T1D development, significantly better than untreated controls and mice treated by either PLGA microparticles or Ins29-23 per se. Subsequent mechanistic investigation further revealed a facilitative role of PLGA microparticles in immune tolerance induction. In summary, our data demonstrate an adjuvant potential of PLGA microparticles in tolerance induction and immune remodulation for effective prevention of autoimmune diseases such as T1D.
Collapse
Affiliation(s)
- Mohan Liu
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dandan Feng
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Min Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hai Wang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Centre of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Centre of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Centre, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
8
|
Zhang T, Li M, Wang X, Zhou Z, Yuan W, Ma J. Facile synthesis of polylactide coarse microspheres as artificial antigen-presenting cells. Chem Commun (Camb) 2018; 54:11356-11359. [DOI: 10.1039/c8cc04958k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic poly(l-lactide) coarse microspheres as artificial antigen-presenting cells were synthesized via simple chemical etching and antibody immobilization.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Min Li
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials
- Tianjin
- China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials
- Tianjin
- China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| |
Collapse
|
9
|
Silk fibroin-coated PLGA dimpled microspheres for retarded release of simvastatin. Colloids Surf B Biointerfaces 2017; 158:112-118. [DOI: 10.1016/j.colsurfb.2017.06.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|
10
|
Fan Q, Qi F, Miao C, Yue H, Gong F, Wu J, Ma G, Su Z. Direct and controllable preparation of uniform PLGA particles with various shapes and surface morphologies. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Zhu YF, Xu YN, Wu CH, Jiang F, Zhou X, Xiao YJ, Shen XC, Tao L. Preparation and characterization of tanshinone IIA OH-PDLLA-OR microspheres. J Drug Deliv Sci Technol 2016; 32:43-48. [DOI: 10.1016/j.jddst.2016.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Yu Z, Yu M, Zhang Z, Hong G, Xiong Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. NANOSCALE RESEARCH LETTERS 2014; 9:343. [PMID: 25114637 PMCID: PMC4106659 DOI: 10.1186/1556-276x-9-343] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/26/2014] [Indexed: 05/23/2023]
Abstract
Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.
Collapse
Affiliation(s)
- Zhan Yu
- Department of ENT, The Second Artillery General Hospital of Chinese People's Liberation Army, 16 Xinjiekou Outer Avenue, Beijing 100088, People's Republic of China
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, College of Basic Medicine, China Medical University, 92 Beier Road, Shenyang 110001, People's Republic of China
| | - Zhibao Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, People's Republic of China
| | - Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, People's Republic of China
| | - Qingqing Xiong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, People's Republic of China
| |
Collapse
|
13
|
Zhang SF, Chen PH, Zhang F, Yang YF, Liu DK, Wu G. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12219-12225. [PMID: 24283703 DOI: 10.1021/jf403722q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.
Collapse
Affiliation(s)
- Shao Fei Zhang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University , Fuzhou, China 350002
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Li R, Li X, Liu L, Zhou Z, Tang H, Zhang Q. High-Yield Fabrication of PLGA Non-Spherical Microarchitectures by Emulsion-Solvent Evaporation Method. Macromol Rapid Commun 2010; 31:1981-6. [DOI: 10.1002/marc.201000332] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/19/2010] [Indexed: 11/08/2022]
|
16
|
Al Helou M, Anjum N, Guedeau-Boudeville MA, Rosticher M, Mourchid A. Structure and mechanical properties of polylactide copolymer microspheres and capsules. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|