1
|
|
2
|
Xu L, Chen Z, Zou Z. Dewetting of a pre-patterned thin polymer bilayer: influence of the instability mode. RSC Adv 2017. [DOI: 10.1039/c7ra03506c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different surface structures are fabricated via adjusting the instability mode from a thermodynamically controlled one to a kinetically controlled one.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- P. R. China
| | - Zhengjian Chen
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- P. R. China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- P. R. China
| |
Collapse
|
3
|
Yang Q, Zhu Y, You J, Li Y. Stability and structure evolution in PMMA/SAN bilayer films upon solvent annealing. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
|
5
|
Bhandaru N, Das A, Mukherjee R. Confinement induced ordering in dewetting of ultra-thin polymer bilayers on nanopatterned substrates. NANOSCALE 2016; 8:1073-1087. [PMID: 26658720 DOI: 10.1039/c5nr06690e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the dewetting of a thin bilayer of polystyrene (PS) and poly(methylmethacrylate) (PMMA) on a topographically patterned nonwettable substrate comprising an array of pillars, arranged in a square lattice. With a gradual increase in the concentration of the PMMA solution (Cn-PMMA), the morphology of the bottom layer changes to: (1) an aligned array of spin dewetted droplets arranged along substrate grooves at very low Cn-PMMA; (2) an interconnected network of threads surrounding each pillar at intermediate Cn-PMMA; and (3) a continuous bottom layer at higher Cn-PMMA. On the other hand the morphology of the PS top layer depends largely on the nature of the pre-existing bottom layer, in addition to Cn-PS. An ordered array of PMMA core-PS shell droplets forms right after spin coating when both Cn-PMMA and Cn-PS are very low. Bilayers with all other initial configurations evolve during thermal annealing, resulting in a variety of ordered structures. Unique morphologies realized include laterally coexisting structures of the two polymers confined within the substrate grooves due to initial rupture of the bottom layer on the substrate followed by a squeezing flow of the top layer; an array of core-shell and single polymer droplets arranged in an alternating order etc., to highlight a few. Such structures cannot be fabricated by any stand-alone lithography technique. On the other hand, in some cases the partially dewetted bottom layer imparts stability to an intact top PS layer against dewetting. Apart from ordering, under certain specific conditions significant miniaturization and downsizing of dewetted feature periodicity and dimension as compared to dewetting of a single layer on a flat substrate is observed. With the help of a morphology phase diagram we show that ordering is achieved over a wide combination of Cn-PMMA and Cn-PS, though the morphology and dewetting pathway differs significantly with variation in the thickness of the individual layers.
Collapse
Affiliation(s)
- Nandini Bhandaru
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Pin 721302, India.
| | - Anuja Das
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Pin 721302, India.
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Pin 721302, India.
| |
Collapse
|
6
|
Martínez-Tong DE, Rodríguez-Rodríguez Á, Nogales A, García-Gutiérrez MC, Pérez-Murano F, Llobet J, Ezquerra TA, Rebollar E. Laser Fabrication of Polymer Ferroelectric Nanostructures for Nonvolatile Organic Memory Devices. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19611-19618. [PMID: 26280158 DOI: 10.1021/acsami.5b05213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymer ferroelectric laser-induced periodic surface structures (LIPSS) have been prepared on ferroelectric thin films of a poly(vinylidene fluoride-trifluoroethylene) copolymer. Although this copolymer does not absorb light at the laser wavelength, LIPSS on the copolymer can be obtained by forming a bilayer with other light-absorbing polymers. The ferroelectric nature of the structured bilayer was proven by piezoresponse force microscopy measurements. Ferroelectric hysteresis was found on both the bilayer and the laser-structured bilayer. We show that it is possible to write ferroelectric information at the nanoscale. The laser-structured ferroelectric bilayer showed an increase in the information storage density of an order of magnitude, in comparison to the original bilayer.
Collapse
Affiliation(s)
| | | | - Aurora Nogales
- Instituto de Estructura de la Materia (IEM-CSIC), C/Serrano 121, Madrid 28006, Spain
| | | | - Francesc Pérez-Murano
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB 08193, Cerdanyola del Vallès (Bellaterra) Barcelona, Spain
| | - Jordi Llobet
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB 08193, Cerdanyola del Vallès (Bellaterra) Barcelona, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia (IEM-CSIC), C/Serrano 121, Madrid 28006, Spain
| | - Esther Rebollar
- Instituto de Química Física Rocasolano (IQFR-CSIC), C/Serrano 119, Madrid 28006, Spain
| |
Collapse
|
7
|
Zhang Z, Wang L, Ding Y. Influence of substrate confinement on the phase-correlation in the capillary breakup of arrays of patterned polymer stripes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3073-3079. [PMID: 23394439 DOI: 10.1021/la304528t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigated the influence of substrate confinement on the capillary breakup of parallel nonaxisymmetric polymer stripes suspended on top of, or confined between, another immiscible polymer pattern. When the residual layer thickness of the pattern was reasonably large, the PS (or PMMA) stripes confined within PMMA (or PS) trenches broke up, either nucleated, out-of-phase, or without clear phase correlation depending on the geometry and viscosity ratio between the two polymers. In stark contrast, for the two extreme cases of viscosity ratios we studied, in-phase breakup of confined polymer stripes was always observed when the alternating PS/PMMA stripes were formed, that is, without residual layer, regardless of the specific geometry.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309-0427, USA
| | | | | |
Collapse
|
8
|
Roy S, Biswas D, Salunke N, Das A, Vutukuri P, Singh R, Mukherjee R. Control of Morphology in Pattern Directed Dewetting of a Thin Polymer Bilayer. Macromolecules 2013. [DOI: 10.1021/ma3018525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudeshna Roy
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Debarati Biswas
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Namrata Salunke
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Ajit Das
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Pavanaphani Vutukuri
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Ravdeep Singh
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Rabibrata Mukherjee
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| |
Collapse
|
9
|
Mondal K, Kumar P, Bandyopadhyay D. Electric field induced instabilities of thin leaky bilayers: Pathways to unique morphologies and miniaturization. J Chem Phys 2013; 138:024705. [DOI: 10.1063/1.4773857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Xu L, Sharma A, Joo SW. Dewetting of Stable Thin Polymer Films Induced by a Poor Solvent: Role of Polar Interactions. Macromolecules 2012. [DOI: 10.1021/ma301227m] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Xu
- School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, Korea
| | - Ashutosh Sharma
- School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, Korea
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, Korea
| |
Collapse
|
11
|
Yang Z, Xin-Ping L, Qing-Xuan Z. Dissipative particle dynamics studies on the interface of incompatible A/B homopolymer blends in the presence of nanorods. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.10.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|