1
|
Ferreira A, Turchetti D, Santana A, Akcelrud L, Mascarenhas Y. Structural and morphological characterization of the crystallites from semicrystalline regions of poly (9,9′-dihexylfluorene). INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1968121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- André Ferreira
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Denis Turchetti
- Department of Chemistry, Paulo Scarpa Laboratory of Polymer (LaPPS), Federal University of Paraná, Curitiba, Brazil
| | - Alisson Santana
- Department of Chemistry, Paulo Scarpa Laboratory of Polymer (LaPPS), Federal University of Paraná, Curitiba, Brazil
| | - Leni Akcelrud
- Department of Chemistry, Paulo Scarpa Laboratory of Polymer (LaPPS), Federal University of Paraná, Curitiba, Brazil
| | - Yvonne Mascarenhas
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
2
|
Wang B, Ye H, Riede M, Bradley DDC. Chain Conformation Control of Fluorene-Benzothiadiazole Copolymer Light-Emitting Diode Efficiency and Lifetime. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2919-2931. [PMID: 33411508 DOI: 10.1021/acsami.0c18490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The β-phase, in which the intermonomer torsion angle of a fraction of chain segments approaches ∼180°, is an intriguing conformational microstructure of the widely studied light-emitting polymer poly(9,9-dioctylfluorene) (PFO). Its generation can in turn be used to significantly improve the performance of PFO emission-layer-based light-emitting diodes (LEDs). Here, we report the generation of β-phase chain segments in a copolymer, 90F8:10BT, containing 90% 9,9-dioctylfluorene (F8) and 10% 2,1,3-benzothiadiazole (BT) units and show that significant improvements in performance also ensue for LEDs with β-phase 90F8:10BT emission layers, generalizing the earlier PFO results. The β-phase was induced by both solvent vapor annealing and dipping copolymer thin films into a solvent/nonsolvent mixture. Subsequent absorption spectra show the characteristic fluorene β-phase peak at ∼435 nm, but luminescence spectra (∼530 nm peak) and quantum yields barely change, with the emission arising following efficient energy transfer to the lowest-lying excited states localized in the vicinity of the BT units. For ∼5% β-phase chain segment fraction relative to 0% β-phase, the LED luminance at 10 V increased by ∼25% to 5940 cd m-2, the maximum external quantum efficiency by ∼61 to 1.91%, and the operational stability from 64% luminance retention after 20 h of operation to 90%. Detailed studies addressing the underlying device physics identify a reduced hole injection barrier, higher hole mobility, correspondingly more balanced electron and hole charge transport, and decreased carrier trapping as the dominant factors. These results confirm the effectiveness of chain conformation control for fluorene-based homo- and copolymer device optimization.
Collapse
Affiliation(s)
- Bingjun Wang
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Hao Ye
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Moritz Riede
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Donal D C Bradley
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Jiang Y, Liu YY, Liu X, Lin H, Gao K, Lai WY, Huang W. Organic solid-state lasers: a materials view and future development. Chem Soc Rev 2020; 49:5885-5944. [PMID: 32672260 DOI: 10.1039/d0cs00037j] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lasing applications have spread over various aspects of human life. To meet the developing trends of the laser industry towards being miniature, portable, and highly integrated, new laser technologies are in urgent demand. Organic semiconductors are promising gain medium candidates for novel laser devices, due to their convenient processing techniques, ease of spectral and chemical tuning, low refractive indexes, mechanical flexibilities, and low thresholds, etc. organic solid-state lasers (OSSLs) open up a new horizon of simple, low-cost, time-saving, versatile and environmental-friendly manufacturing technologies for new and desirable laser structures (micro-, asymmetric, flexible, etc.) to unleash the full potential of semiconductor lasers for future electronics. Besides the development of optical feedback structures, the design and synthesis of robust organic gain media is critical as a vigorous aspect of OSSLs. Herein, we provide a comprehensive review of recent advances in organic gain materials, mainly focused on organic semiconductors for OSSLs. The significant breakthroughs toward electrical pumping of OSSLs are emphasized. Opportunities, challenges and future research directions for the design of organic gain media are also discussed.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yuan-Yuan Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xu Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - He Lin
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kun Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. and Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. and Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
4
|
Smyslov RY, Tomilin FN, Shchugoreva IA, Nosova GI, Zhukova EV, Litvinova LS, Yakimansky AV, Kolesnikov I, Abramov IG, Ovchinnikov SG, Avramov PV. Synthesis and photophysical properties of copolyfluorenes for light-emitting applications: Spectroscopic experimental study and theoretical DFT consideration. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Feng QY, Li B, Zuo ZY, Xie SL, Yu MN, Liu B, Wei Y, Xie LH, Xia RD, Huang W. A Comparison Study of Physicochemical Properties and Stabilities of H-Shaped Molecule and the Corresponding Polymer. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2152-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Yu MN, Soleimaninejad H, Lin JY, Zuo ZY, Liu B, Bo YF, Bai LB, Han YM, Smith TA, Xu M, Wu XP, Dunstan DE, Xia RD, Xie LH, Bradley DDC, Huang W. Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene β-Conformation Films. J Phys Chem Lett 2018; 9:364-372. [PMID: 29298074 DOI: 10.1021/acs.jpclett.7b03148] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (β-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene β-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) β-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures. Besides, β-conformational regions have larger fluorescence anisotropy for the low molecular rotational motion and high chain orientation, while the low anisotropy in glassy conformational regions shows more rotational freedom of the chain and efficient energy migration from amorphous regions to β-conformation as a whole. Finally, ultrastable ASE threshold in the PODPF β-conformational films also confirms its potential application in organic lasers. In this regard, FLIM and FAIM measurements provide an effective platform to explore the fundamental photophysical process of conformational transitions in conjugated polymer.
Collapse
Affiliation(s)
- Meng-Na Yu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Hamid Soleimaninejad
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jin-Yi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Zong-Yan Zuo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Bin Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Yi-Fan Bo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Lu-Bing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Ya-Min Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Trevor A Smith
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Man Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Ping Wu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Dave E Dunstan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Rui-Dong Xia
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Donal D C Bradley
- Departments of Engineering Science and Physics and Division of Mathematical, Physical and Life Sciences, Oxford University , 9 Parks Road, Oxford OX1 3PD, United Kingdom
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) , 127 West Youyi Road, Xi'an 710072, Shaanxi, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
7
|
Kuehne AJC, Gather MC. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques. Chem Rev 2016; 116:12823-12864. [DOI: 10.1021/acs.chemrev.6b00172] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. C. Kuehne
- DWI−Leibniz
Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr.
50, 52056 Aachen, Germany
| | - Malte C. Gather
- Organic
Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
8
|
Lin JY, Zhu WS, Liu F, Xie LH, Zhang L, Xia R, Xing GC, Huang W. A Rational Molecular Design of β-Phase Polydiarylfluorenes: Synthesis, Morphology, and Organic Lasers. Macromolecules 2014. [DOI: 10.1021/ma402585n] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin-Yi Lin
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, P. R. China
| | - Wen-Sai Zhu
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, P. R. China
| | - Feng Liu
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays, Institute of Advanced Materials, Nanjing-Tech. University, Nanjing, P. R. China
| | - Ling-Hai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, P. R. China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays, Institute of Advanced Materials, Nanjing-Tech. University, Nanjing, P. R. China
| | - Long Zhang
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, P. R. China
| | - Ruidong Xia
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, P. R. China
| | - Gui-Chuan Xing
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays, Institute of Advanced Materials, Nanjing-Tech. University, Nanjing, P. R. China
| | - Wei Huang
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, P. R. China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays, Institute of Advanced Materials, Nanjing-Tech. University, Nanjing, P. R. China
| |
Collapse
|
9
|
Quites FJ, Domingues RA, Ferbonink GF, Nome RA, Atvars TDZ. Facile control of system-bath interactions and the formation of crystalline phases of poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9-di-{5′-pentanyl}-fluorenyl-2,7-diyl)] in silicone-based polymer hosts. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2012.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Knaapila M, Monkman AP. Methods for controlling structure and photophysical properties in polyfluorene solutions and gels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1090-1108. [PMID: 23341026 DOI: 10.1002/adma.201204296] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Indexed: 06/01/2023]
Abstract
Knowledge of the phase behavior of polyfluorene solutions and gels has expanded tremendously in recent years. The relationship between the structure formation and photophysics is known at the quantitative level. The factors which we understand control these relationships include virtually all important materials parameters such as solvent quality, side chain branching, side chain length, molecular weight, thermal history and myriad functionalizations. This review describes advances in controlling structure and photophysical properties in polyfluorene solutions and gels. It discusses the demarcation lines between solutions, gels, and macrophase separation in conjugated polymers and reviews essential solid state properties needed for understanding of solutions. It gives an insight into polyfluorene and polyfluorene beta phase in solutions and gels and describes all the structural levels in solvent matrices, ranging from intramolecular structures to the diverse aggregate classes and network structures and agglomerates of these units. It goes on to describe the kinetics and thermodynamics of these structures. It details the manifold molecular parameters used in their control and continues with the molecular confinement and touches on permanently cross-linked networks. Particular focus is placed on the experimental results of archetypical polyfluorenes and solvent matrices and connection between structure and photonics. A connection is also made to the mean field type theories of hairy-rod like polymers. This altogether allows generalizations and provides a guideline for materials scientists, synthetic chemists and device engineers as well, for this important class of semiconductor, luminescent polymers.
Collapse
Affiliation(s)
- Matti Knaapila
- Physics Department, Institute for Energy Technology, 2027 Kjeller, Norway.
| | | |
Collapse
|