1
|
Lan T, Wei T, Fenimore LM, Torkelson JM. Effect of Confinement on the Translational Diffusivity of Small Dye Molecules in Thin Polystyrene Films and Its Connection to Tg-Confinement and Fragility-Confinement Effects. J Phys Chem B 2024; 128:12259-12267. [PMID: 39629935 DOI: 10.1021/acs.jpcb.4c06495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Using fluorescence, we study the impact of nanoscale confinement on the translational diffusivity (D) of trace levels of a small-molecule dye, 9,10-bis(phenylethynyl)anthracene (BPEA), in supported polystyrene (PS) films via Förster resonance energy transfer (FRET). Reductions in BPEA diffusivity are observed in films thinner than ∼200 nm, with D decreasing by 80-90% in 100 nm-thick films compared to bulk. The activation energy of BPEA diffusivity increases from ∼210 kJ/mol in bulk films to ∼370 kJ/mol in 130 nm-thick films. BPEA exhibits a greater diffusivity-confinement effect than a larger dye, decacyclene, in terms of the length scale at which the effects of confinement become evident and the percentage reduction in diffusivity. For both BPEA and decacyclene, the diffusivity-confinement effect in supported PS films occurs at a length scale much larger than that for the glass transition temperature (Tg)-confinement effect and somewhat larger than that for the fragility-confinement effect. This difference in confinement-effect length scales can be rationalized as follows: small-molecule dye diffusivity relates predominantly to short times in the α-relaxation distribution, whereas Tg relates to long times in the α-relaxation distribution, and fragility reflects the overall breadth of this relaxation time distribution. If confinement results in a narrower relaxation time distribution in PS films with the short-time relaxations being shifted to longer times and the longest-time relaxation regimes being shifted to shorter times, then Tg, diffusivity, and fragility all decrease at sufficient levels of confinement. If the narrowing with confinement begins with the shortest relaxation time regimes, then fragility and small-molecule dye diffusivity are influenced by confinement at larger length scales than Tg.
Collapse
Affiliation(s)
- Tian Lan
- Department of Materials Science, Engineering Northwestern University, Evanston, Illinois 60208, United States
| | - Tong Wei
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Logan M Fenimore
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M Torkelson
- Department of Materials Science, Engineering Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Wang T, Hu S, Zhang S, Peera A, Reffner J, Torkelson JM. Eliminating the Tg-Confinement Effect in Polystyrene Films: Extraordinary Impact of a 2 mol % 2-Ethylhexyl Acrylate Comonomer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Sumeng Hu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Sipei Zhang
- The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania19426, United States
| | - Asghar Peera
- The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania19426, United States
| | - John Reffner
- The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania19426, United States
| | - John M. Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
3
|
Orselly M, Devemy J, Bouvet-Marchand A, Dequidt A, Loubat C, Malfreyt P. Molecular Simulations of Thermomechanical Properties of Epoxy-Amine Resins. ACS OMEGA 2022; 7:30040-30050. [PMID: 36061676 PMCID: PMC9434774 DOI: 10.1021/acsomega.2c03071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
All-atom molecular dynamics (MD) simulations were performed with the CHARMM force field to characterize various epoxy resins, such as aliphatic and bisphenol-based resins. A multistep cross-linking algorithm was established, and key properties such as density, glass temperature, and elastic modulus were calculated. A quantitative comparison was made and was proven to be in good agreement with experimental data, with average absolute deviations between experiments and molecular simulation comprised between 2% and 12%. Additional findings on structure-property relationships were highlighted such as the effect of the cross-linking rate and oligomerization of the resin.
Collapse
Affiliation(s)
- Mathilde Orselly
- Specific
Polymers, 150 Avenue des Cocardières, 34160 Castries, France
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Julien Devemy
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | | | - Alain Dequidt
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Cédric Loubat
- Specific
Polymers, 150 Avenue des Cocardières, 34160 Castries, France
| | - Patrice Malfreyt
- Université
Clermont Auvergne,Clermont Auvergne
INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Chen B, Torkelson JM. Development of rigid amorphous fraction in cold‐crystallized syndiotactic polystyrene films confined near the nanoscale: Novel analysis via ellipsometry. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Boran Chen
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - John M. Torkelson
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| |
Collapse
|
5
|
McKenzie I, Fujimoto D, Karner VL, Li R, MacFarlane WA, McFadden RML, Morris GD, Pearson MR, Raegen AN, Stachura M, Ticknor JO, Forrest JA. A β-NMR study of the depth, temperature, and molecular-weight dependence of secondary dynamics in polystyrene: Entropy–enthalpy compensation and dynamic gradients near the free surface. J Chem Phys 2022; 156:084903. [DOI: 10.1063/5.0081185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the depth, temperature, and molecular-weight (MW) dependence of the γ-relaxation in polystyrene glasses using implanted 8Li+ and β-detected nuclear magnetic resonance. Measurements were performed on thin films with MW ranging from 1.1 to 641 kg/mol. The temperature dependence of the average 8Li spin–lattice relaxation time [Formula: see text] was measured near the free surface and in the bulk. Spin–lattice relaxation is caused by phenyl ring flips, which involve transitions between local minima over free-energy barriers with enthalpic and entropic contributions. We used transition state theory to model the temperature dependence of the γ-relaxation, and hence [Formula: see text]. There is no clear correlation of the average entropy of activation [Formula: see text] and enthalpy of activation [Formula: see text] with MW, but there is a clear correlation between [Formula: see text] and [Formula: see text], i.e., entropy–enthalpy compensation. This results in the average Gibbs energy of activation, [Formula: see text], being approximately independent of MW. Measurements of the temperature dependence of [Formula: see text] as a function of depth below the free surface indicate the inherent entropic barrier, i.e., the entropy of activation corresponding to [Formula: see text] = 0, has an exponential dependence on the distance from the free surface before reaching the bulk value. This results in [Formula: see text] near the free surface being lower than the bulk. Combining these observations results in a model where the average fluctuation rate of the γ-relaxation has a “double-exponential” depth dependence. This model can explain the depth dependence of [Formula: see text] in polystyrene films. The characteristic length of enhanced dynamics is ∼6 nm and approximately independent of MW near room temperature.
Collapse
Affiliation(s)
- Iain McKenzie
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Derek Fujimoto
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Victoria L. Karner
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ruohong Li
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - W. Andrew MacFarlane
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryan M. L. McFadden
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | - Matthew R. Pearson
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - Adam N. Raegen
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - John O. Ticknor
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - James A. Forrest
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|
6
|
Gao K, Zhao H, Wang Y, Wan H, Zhang Z, Chen Z, Hou G, Liu J, Zhang L. Heterogeneous Dynamics of Polymer Melts Exerted by Chain Loops Anchored on the Substrate: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12290-12303. [PMID: 34636573 DOI: 10.1021/acs.langmuir.1c01678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding polymer-substrate interfacial dynamics at the molecular level is crucial for tailoring the properties of polymer ultrathin films (PUFs). Herein, through coarse-grained molecular dynamics simulation, the effect of length (Nloop) and rigidity (Kloop) of loop chains on the dynamics of linear chains is systematically explored, in which the loop chains are adsorbed on a solid substrate and the linear chains are covered on the loop chains. It is found that there is an optimal Kloop, which strongly confines the motion of the linear chains. Meanwhile, compared to increasing the rigidity of the loop chains, increasing the length of the loop chains can more effectively confine the motion of the linear chains. More interestingly, we observe that the mismatch of the length (ΔN) and rigidity (ΔK) between the loop and linear chains leads to dynamic asymmetry (ΔDc). The relationship between the ΔN, ΔK, and ΔDc are found to follow the mathematical expression of ΔDc ∼ (ΔN)α(ΔK)β, in which the values of α and β are around 4.58 and 0.83, separately. Remarkably, using the Gaussian process regression model, we construct a master curve of diffusion coefficient on the segmental and chain length scales of the linear chains as a function of Nloop and Kloop, which is further validated by our simulated prediction. In general, this work provides a fundamental understanding of polymer interfacial dynamics at the molecular level, enlightening some rational principles for manipulating the physical properties of PUFs.
Collapse
Affiliation(s)
- Ke Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hengheng Zhao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yachen Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haixiao Wan
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhiyu Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhudan Chen
- Institute of Automation, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guanyi Hou
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100029, People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
7
|
Roth CB. Polymers under nanoconfinement: where are we now in understanding local property changes? Chem Soc Rev 2021; 50:8050-8066. [PMID: 34086025 DOI: 10.1039/d1cs00054c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers are increasingly being used in applications with nanostructured morphologies where almost all polymer molecules are within a few tens to hundreds of nanometers from some interface. From nearly three decades of study on polymers in simplified nanoconfined systems such as thin films, we have come to understand property changes in these systems as arising from interfacial effects where local dynamical perturbations are propagated deeper into the material. This review provides a summary of local glass transition temperature Tg changes near interfaces, comparing across different types of interfaces: free surface, substrate, liquid, and polymer-polymer. Local versus film-average properties in thin films are discussed, making connections to other related property changes, while highlighting several historically important studies. By experimental necessity, most studies are on high enough molecule weight chains to be well entangled, although aspects that connect to lower molecule weight materials are described. Emphasis is made to identify observations and open questions that have yet to be fully understood such as the evidence of long-ranged interfacial effects, finite domain size, interfacial breadth, and chain connectivity.
Collapse
Affiliation(s)
- Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
8
|
Giermanska J, Ben Jabrallah S, Delorme N, Vignaud G, Chapel JP. Direct experimental evidences of the density variation of ultrathin polymer films with thickness. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
DeFelice J, Lipson JEG. The influence of additives on polymer matrix mobility and the glass transition. SOFT MATTER 2021; 17:376-387. [PMID: 33169780 DOI: 10.1039/d0sm01634a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the region near an interface, the microscopic properties of a glass forming liquid may be perturbed from their equilibrium bulk values. In this work, we probe how the interfacial effects of additive particles dispersed in a matrix can influence the local mobility of the material and its glass transition temperature, Tg. Experimental measurements and simulation results indicate that additives, such as nanoparticles, gas molecules, and oligomers, can shift the mobility and Tg of a surrounding polymer matrix (even for relatively small concentrations of additive; e.g., 5-10% by volume) relative to the pure bulk matrix, thus leading to Tg enhancement or suppression. Additives thus provide a potential route for modifying the properties of a polymer material without significantly changing its chemical composition. Here we apply the Limited Mobility (LM) model to simulate a matrix containing additive species. We show that both additive concentration, as well as the strength of its very local influence on the surrounding matrix material, will determine whether the Tg of the system is raised or lowered, relative to the pure matrix. We demonstrate that incorporation of additives into the simple LM simulation method, which has successfully described the behavior of bulk and thin film glassy solids, leads to direct connections with available experimental and simulation results for a broad range of polymer/additive systems.
Collapse
Affiliation(s)
- Jeffrey DeFelice
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
10
|
Li L, Qiang Z, Chen X, Jin K, Wang M, Torkelson JM. Impact of bottlebrush chain architecture on
T
g
‐confinement and
fragility‐confinement
effects enabled by thermo‐cleavable bottlebrush polymers synthesized by radical coupling and atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lingqiao Li
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Zhe Qiang
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Xi Chen
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Kailong Jin
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - Muzhou Wang
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - John M. Torkelson
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| |
Collapse
|
11
|
Wei T, Torkelson JM. Molecular Weight Dependence of the Glass Transition Temperature ( Tg)-Confinement Effect in Well-Dispersed Poly(2-vinyl pyridine)–Silica Nanocomposites: Comparison of Interfacial Layer Tg and Matrix Tg. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tong Wei
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Hajduk B, Bednarski H, Trzebicka B. Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. J Phys Chem B 2020; 124:3229-3251. [PMID: 32275433 PMCID: PMC7590969 DOI: 10.1021/acs.jpcb.9b11863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Indexed: 12/03/2022]
Abstract
Thin polymer films have found many important applications in organic electronics, such as active layers, protective layers, or antistatic layers. Among the various experimental methods suitable for studying the thermo-optical properties of thin polymer films, temperature-dependent spectroscopic ellipsometry plays a special role as a nondestructive and very sensitive optical technique. In this Review Article, issues related to the physical origin of the dependence of ellipsometric angles on temperature are surveyed. In addition, the Review Article discusses the use of temperature-dependent spectroscopic ellipsometry for studying phase transitions in thin polymer films. The benefits of studying thermal transitions using different cooling/heating speeds are also discussed. Furthermore, it is shown how the analysis and modeling of raw ellipsometric data can be used to determine the thermal properties of thin polymer films.
Collapse
Affiliation(s)
- Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Henryk Bednarski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
13
|
Xia W, Lan T. Interfacial Dynamics Governs the Mechanical Properties of Glassy Polymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjie Xia
- Department of Civil & Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tian Lan
- Formulation, Automation & Materials Science, Core R&D, The Dow Chemical Company, 400 Arcola Rd., Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
14
|
Kang E, Graczykowski B, Jonas U, Christie D, Gray LAG, Cangialosi D, Priestley RD, Fytas G. Shell Architecture Strongly Influences the Glass Transition, Surface Mobility, and Elasticity of Polymer Core-Shell Nanoparticles. Macromolecules 2019; 52:5399-5406. [PMID: 31367064 PMCID: PMC6659035 DOI: 10.1021/acs.macromol.9b00766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/14/2019] [Indexed: 01/29/2023]
Abstract
Despite the growing application of nanostructured polymeric materials, there still remains a large gap in our understanding of polymer mechanics and thermal stability under confinement and near polymer-polymer interfaces. In particular, the knowledge of polymer nanoparticle thermal stability and mechanics is of great importance for their application in drug delivery, phononics, and photonics. Here, we quantified the effects of a polymer shell layer on the modulus and glass-transition temperature (T g) of polymer core-shell nanoparticles via Brillouin light spectroscopy and modulated differential scanning calorimetry, respectively. Nanoparticles consisting of a polystyrene (PS) core and shell layers of poly(n-butyl methacrylate) (PBMA) were characterized as model systems. We found that the high T g of the PS core was largely unaffected by the presence of an outer polymer shell, whereas the lower T g of the PBMA shell layer decreased with increasing PBMA thickness. The surface mobility was revealed at a temperature about 15 K lower than the T g of the PBMA shell layer. Overall, the modulus of the core-shell nanoparticles decreased with increasing PBMA shell layer thickness. These results suggest that the nanoparticle modulus and T g can be tuned independently through the control of nanoparticle composition and architecture.
Collapse
Affiliation(s)
- Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Umultowska 85, 61614 Poznan, Poland
| | - Ulrich Jonas
- Department
of Chemistry and Biology, University of
Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Dane Christie
- Department
of Chemical and Biological Engineering and Princeton Institute for the Science
and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Laura A. G. Gray
- Department
of Chemical and Biological Engineering and Princeton Institute for the Science
and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniele Cangialosi
- Centro
de
Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering and Princeton Institute for the Science
and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
15
|
Thees MF, Roth CB. Unexpected Molecular Weight Dependence to the Physical Aging of Thin Polystyrene Films Present at Ultra‐High Molecular Weights. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Connie B. Roth
- Department of Physics Emory University Atlanta Georgia 30322
| |
Collapse
|
16
|
Godey F, Bensaid M, Soldera A. Extent of the glass transition in polymers envisioned by computation of mechanical properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Xia W, Song J, Hsu DD, Keten S. Side-group size effects on interfaces and glass formation in supported polymer thin films. J Chem Phys 2018; 146:203311. [PMID: 28571359 DOI: 10.1063/1.4976702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies on glass-forming polymers near interfaces have emphasized the importance of molecular features such as chain stiffness, side-groups, molecular packing, and associated changes in fragility as key factors that govern the magnitude of Tg changes with respect to the bulk in polymer thin films. However, how such molecular features are coupled with substrate and free surface effects on Tg in thin films remains to be fully understood. Here, we employ a chemically specific coarse-grained polymer model for methacrylates to investigate the role of side-group volume on glass formation in bulk polymers and supported thin films. Our results show that bulkier side-groups lead to higher bulk Tg and fragility and are associated with a pronounced free surface effect on overall Tg depression. By probing local Tg within the films, however, we find that the polymers with bulkier side-groups experience a reduced confinement-induced increase in local Tg near a strongly interacting substrate. Further analyses indicate that this is due to the packing frustration of chains near the substrate interface, which lowers the attractive interactions with the substrate and thus lessens the surface-induced reduction in segmental mobility. Our results reveal that the size of the polymer side-group may be a design element that controls the confinement effects induced by the free surface and substrates in supported polymer thin films. Our analyses provide new insights into the factors governing polymer dynamics in bulk and confined environments.
Collapse
Affiliation(s)
- Wenjie Xia
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| | - Jake Song
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| | - David D Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| | - Sinan Keten
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, USA
| |
Collapse
|
18
|
Tamilselvi P, Hema M, Asath Bahadur S. Investigation of Nanocomposite Polymer Electrolytes for Lithium Ion Batteries. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Li S, Shen J, Tonelli AE. The influence of a contaminant in commercial PMMA: A purification method for its removal and its consequences. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Burroughs MJ, Christie D, Gray LAG, Chowdhury M, Priestley RD. 21st Century Advances in Fluorescence Techniques to Characterize Glass‐Forming Polymers at the Nanoscale. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mary J. Burroughs
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Dane Christie
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Laura A. G. Gray
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Mithun Chowdhury
- Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering Princeton Institute for the Science and Technology of Materials Princeton University Princeton NJ 08544 USA
| |
Collapse
|
21
|
Basha SKS, Rao MC. Spectroscopic and electrochemical properties of PVP based polymer electrolyte films. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2229-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abbate M, D'Orazio L. Water Diffusion through a Titanium Dioxide/Poly(Carbonate Urethane) Nanocomposite for Protecting Cultural Heritage: Interactions and Viscoelastic Behavior. NANOMATERIALS 2017; 7:nano7090271. [PMID: 28902179 PMCID: PMC5618382 DOI: 10.3390/nano7090271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Abstract
Water diffusion through a TiO2/poly (carbonate urethane) nanocomposite designed for the eco-sustainable protection of outdoor cultural heritage stonework was investigated. Water is recognized as a threat to heritage, hence the aim was to gather information on the amount of water uptake, as well as of species of water molecules absorbed within the polymer matrix. Gravimetric and vibrational spectroscopy measurements demonstrated that diffusion behavior of the nanocomposite/water system is Fickian, i.e., diffusivity is independent of concentration. The addition of only 1% of TiO2 nanoparticles strongly betters PU barrier properties and water-repellency requirement is imparted. Defensive action against penetration of water free from, and bonded through, H-bonding association arises from balance among TiO2 hydrophilicity, tortuosity effects and quality of nanoparticle dispersion and interfacial interactions. Further beneficial to antisoiling/antigraffiti action is that water-free fraction was found to be desorbed at a constant rate. In environmental conditions, under which weathering processes are most likely to occur, nanocomposite Tg values remain suitable for heritage treatments.
Collapse
Affiliation(s)
- Mario Abbate
- Istituto per i Polimeri, Compositi e Biomateriali, Via Campi Flegrei, 34, Fabbricato 70, 80078 Pozzuoli (Naples), Italy.
| | - Loredana D'Orazio
- Istituto per i Polimeri, Compositi e Biomateriali, Via Campi Flegrei, 34, Fabbricato 70, 80078 Pozzuoli (Naples), Italy.
| |
Collapse
|
23
|
Shahenoor Basha SK, Sunita Sundari G, Vijay Kumar K, Rao MC. Optical and dielectric properties of PVP based composite polymer electrolyte films. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17040095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Enhanced glass transition temperature of low molecular weight poly(methyl methacrylate) by initiator fragments located at chain ends. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Jin K, Torkelson JM. T g -confinement effects in strongly miscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene: Roles of bulk fragility and chain segregation. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Askar S, Wei T, Tan AW, Torkelson JM. Molecular weight dependence of the intrinsic size effect on T g in AAO template-supported polymer nanorods: A DSC study. J Chem Phys 2017; 146:203323. [PMID: 28571378 DOI: 10.1063/1.4978574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies have established a major effect of nanoscale confinement on the glass transition temperature (Tg) of polystyrene (PS), most commonly in thin films with one or two free surfaces. Here, we characterize smaller yet significant intrinsic size effects (in the absence of free surfaces or significant attractive polymer-substrate interactions) on the Tg and fragility of PS. Melt infiltration of various molecular weights (MWs) of PS into anodic aluminum oxide (AAO) templates is used to create nanorods supported on AAO with rod diameter (d) ranging from 24 to 210 nm. The Tg (both as Tg,onset and fictive temperature) and fragility values are characterized by differential scanning calorimetry. No intrinsic size effect is observed for 30 kg/mol PS in template-supported nanorods with d = 24 nm. However, effects on Tg are present for PS nanorods with Mn and Mw ≥ ∼175 kg/mol, with effects increasing in magnitude with increasing MW. For example, in 24-nm-diameter template-supported nanorods, Tg, rod - Tg, bulk = -2.0 to -2.5 °C for PS with Mn = 175 kg/mol and Mw = 182 kg/mol, and Tg, rod - Tg, bulk = ∼-8 °C for PS with Mn = 929 kg/mol and Mw = 1420 kg/mol. In general, reductions in Tg occur when d ≤ ∼2Rg, where Rg is the bulk polymer radius of gyration. Thus, intrinsic size effects are significant when the rod diameter is smaller than the diameter (2Rg) associated with the spherical volume pervaded by coils in bulk. We hypothesize that the Tg reduction occurs when chain segment packing frustration is sufficiently perturbed by confinement in the nanorods. This explanation is supported by observed reductions in fragility with the increasing extent of confinement. We also explain why these small intrinsic size effects do not contradict reports that the Tg-confinement effect in supported PS films with one free surface exhibits little or no MW dependence.
Collapse
Affiliation(s)
- Shadid Askar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Tong Wei
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Anthony W Tan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
27
|
Jin K, Torkelson JM. Enhanced Tg-Confinement Effect in Cross-Linked Polystyrene Compared to Its Linear Precursor: Roles of Fragility and Chain Architecture. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kailong Jin
- Department of Chemical and Biological
Engineering and ‡Department of Materials Science
and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department of Chemical and Biological
Engineering and ‡Department of Materials Science
and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Geng K, Tsui OKC. Effects of Polymer Tacticity and Molecular Weight on the Glass Transition Temperature of Poly(methyl methacrylate) Films on Silica. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00108] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kun Geng
- Department
of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Ophelia K. C. Tsui
- Department
of Physics, Boston University, Boston, Massachusetts 02215, United States
- Division
of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
29
|
DeFelice J, Milner ST, Lipson JEG. Simulating Local Tg Reporting Layers in Glassy Thin Films. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jeffrey DeFelice
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
30
|
Lan T, Torkelson JM. Fragility-Confinement Effects: Apparent Universality as a Function of Scaled Thickness in Films of Freely Deposited, Linear Polymer and Its Absence in Densely Grafted Brushes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02489] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tian Lan
- Department of Materials Science
and Engineering and ‡Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Department of Materials Science
and Engineering and ‡Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Tan AW, Torkelson JM. Poly(methyl methacrylate) nanotubes in AAO templates: Designing nanotube thickness and characterizing the T-confinement effect by DSC. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.11.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Zhang L, Elupula R, Grayson SM, Torkelson JM. Major Impact of Cyclic Chain Topology on the Tg-Confinement Effect of Supported Thin Films of Polystyrene. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02474] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Ravinder Elupula
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | |
Collapse
|
33
|
Evans CM, Kim S, Roth CB, Priestley RD, Broadbelt LJ, Torkelson JM. Role of neighboring domains in determining the magnitude and direction of Tg-confinement effects in binary, immiscible polymer systems. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
|
35
|
Spièce J, Martínez-Tong DE, Sferrazza M, Nogales A, Napolitano S. Are polymers glassier upon confinement? SOFT MATTER 2015; 11:6179-6186. [PMID: 26086889 DOI: 10.1039/c5sm01229e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glass forming systems are characterized by a stability against crystallization upon heating and by the easiness with which their liquid phase can be transformed into a solid lacking of long-range order upon cooling (glass forming ability). Here, we report the thickness dependence of the thermal phase transition temperatures of poly(l-lactide acid) thin films supported onto solid substrates. The determination of the glass transition, cold crystallization and melting temperatures down to a thickness of 6 nm, permitted us to build up parameters describing glass stability and glass forming ability. We observed a strong influence of the film thickness on the latter, while the former is not affected by 1D confinement. Further experiments permitted us to highlight key structural morphology features giving insights to our ellipsometric results via a physical picture based on the changes in the free volume content in proximity of the supporting interfaces.
Collapse
Affiliation(s)
- Jean Spièce
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
36
|
Xia W, Hsu DD, Keten S. Molecular Weight Effects on the Glass Transition and Confinement Behavior of Polymer Thin Films. Macromol Rapid Commun 2015; 36:1422-7. [DOI: 10.1002/marc.201500194] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Wenjie Xia
- Department of Civil & Environmental Engineering and Department of Mechanical Engineering; Northwestern University; Evanston IL 60208 USA
| | - David D. Hsu
- Department of Civil & Environmental Engineering and Department of Mechanical Engineering; Northwestern University; Evanston IL 60208 USA
| | - Sinan Keten
- Department of Civil & Environmental Engineering and Department of Mechanical Engineering; Northwestern University; Evanston IL 60208 USA
| |
Collapse
|
37
|
Lan T, Torkelson JM. Substantial spatial heterogeneity and tunability of glass transition temperature observed with dense polymer brushes prepared by ARGET ATRP. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Jin K, Torkelson JM. Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Zhang L, Torkelson JM. Influence of initiator fragments as chain ends on the Tg-confinement effect and dewetting of thin films of ultralow molecular weight polymer. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Glynos E, Frieberg B, Chremos A, Sakellariou G, Gidley DW, Green PF. Vitrification of Thin Polymer Films: From Linear Chain to Soft Colloid-like Behavior. Macromolecules 2015. [DOI: 10.1021/ma502556n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Alexandros Chremos
- Department
of Chemical Engineering, Centre for System Process System Engineering, Imperial College, South
Kensington Campus, London SW7 2AZ, U.K
| | - Georgios Sakellariou
- Department
of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | | | | |
Collapse
|
41
|
Hao QH, Miao B, Song QG, Niu XH, Liu TJ. Phase behaviors of sphere-forming triblock copolymers confined in nanopores: A dynamic density functional theory study. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.06.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|